K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

\(x^4+y^2-2x^2y+x^2+2x-2y\)

\(=\left(y^2-x^2y-xy\right)-\left(x^2y-x^4-x^3\right)+\left(xy-x^3-x^2\right)-\left(2y-2x^2-2x\right)\)

\(=y\left(y-x^2-x\right)-x^2\left(y-x^2-x\right)+x\left(y-x^2-x\right)-2\left(y-x^2-x\right)\)

\(=\left(y-x^2+x-2\right)\left(y-x^2-x\right)\)

4 tháng 2 2017

Trước tiên chứng minh:

\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

(nhân vô rút gọn chuyển hết sang trái được)

\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-6abc\ge0\)

\(\Leftrightarrow\left(a^2b-2abc+c^2b\right)+\left(a^2c-2abc+b^2c\right)+\left(b^2a-2abc+c^2a\right)\ge0\)

\(\Leftrightarrow\left(a\sqrt{b}-c\sqrt{b}\right)^2+\left(a\sqrt{c}-b\sqrt{c}\right)^2+\left(b\sqrt{a}-c\sqrt{a}\right)^2\ge0\)(đúng)

Từ đây ta có:

\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\left(a+b+c\right)}=\frac{9}{4\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)}\)

\(\le\frac{9}{4.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{4.3}=\frac{3}{4}\)

Vậy \(ab+bc+ca\le\frac{3}{4}\)

14 tháng 4 2017

1 cách khác của tui (câu hỏi của trg tuấn nghĩa) trên hh nhé

21 tháng 1 2017

\(x-\sqrt{x-8}-3.\sqrt{8}+1=0\)Đúng vậy không? vì cách viết của bạn con 8 đầu có thể nằm ngoài căn

14 tháng 4 2017

cách giải đề thi chuyên toán 10 năm 2014-2015

20 tháng 1 2017

bạn là boy hay girls

20 tháng 1 2017

0 rảnh mày ạ. Tìm người khác đi. Chẳng ai yêu mày đâu