\(\frac{2}{3}-\frac{3}{2}\cdot\left(x-\frac{1}{2}\right)=\frac{5}{12}\)
giải với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 + 32 + 33 + 34 + ... + 3100
3A = 3( 3 + 32 + 33 + 34 + ... + 3100 )
= 32 + 33 + 34 + 35 + ... + 3101
3A - A = ( 32 + 33 + 34 + 35 + ... +101 ) - ( 3 + 32 + 33 + 34 + ... + 3100 )
=> 2A = 32 + 33 + 34 + 35 + ... +3101 - 3 - 32 - 33 - 34 - ... - 3100
2A = 3101 - 3
2A + 3 = 3n
=> 3101 + 3 - 3 = 3n
=> 3101 = 3n
=> n = 101
\(A=3+3^2+3^3+3^4+...+3^{100}\)\
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{100}+3^{101}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Leftrightarrow3^{101}-3+3=3^n\)
\(\Rightarrow3^{101}=3^n\Leftrightarrow n=101\) Vậy \(n=101\)
Ta có : \(\frac{1}{2^2}=\frac{1}{4}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{9}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{16}< \frac{1}{3.4}\)
......
\(\frac{1}{8^2}=\frac{1}{64}< \frac{1}{7.8}\)
Ta có : \(VP< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(=1-\frac{1}{8}=\frac{7}{8}\)
Mà \(\frac{7}{8}< 1\)Nên \(B< 1\left(đpcm\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
=> \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
=> \(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
=> \(B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có : \(\frac{7}{8}< 1\)
=> \(B< \frac{7}{8}< 1\Rightarrow B< 1\left(đpcm\right)\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(a)\)\(6-\left(15+15\right)=x-\left(15-6\right)\)
\(\Leftrightarrow6-30=x-9\)
\(\Leftrightarrow-24=x-9\)
\(\Leftrightarrow x=-24+9\)
\(\Leftrightarrow x=-15\)
Vậy\(x=-15\)
\(b)\)\(x+\frac{4}{12}=\frac{3}{-9}\)
\(\Leftrightarrow x+\frac{1}{3}=-\frac{1}{3}\)
\(\Leftrightarrow x=-\frac{1}{3}-\frac{1}{3}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy\(x=\frac{-2}{3}\)
Linz
a, \(6-\left(15+15\right)=x-\left(15-6\right)\)
\(\Leftrightarrow6-30=x-9\Leftrightarrow15=x+30\Leftrightarrow x=-15\)
b, \(\frac{x+4}{12}=\frac{3}{-9}\)
\(\Leftrightarrow-9x-36=36\Leftrightarrow-9x=72\Leftrightarrow x=-8\)
A) VÌ NOM' VÀ MON LÀ 2 GÓC KỀ BÙ
NÊN NOM' +MON =180*
MÀ MON =130*
=>NOM'=180*-130*=50*
B)VÌ MON VÀ M'ON' LÀ 2 GÓC ĐỐI ĐỈNH
NÊN MON =M'ON'
Làm
a) Ta có : góc yOx = 30° ; góc xOz = 90°
mà : góc yOx + góc xOz = góc yOz
30° + 90° = góc yOz
=> góc yOz = 120°
b) Ta có : Ot là tia phân giác góc zOx nên ta có : góc xOt = góc tOz = zOx :2
=> góc xOt = góc tOz = 90 : 2
=> góc xOt = góc tOz = 45°
Vậy góc xOt = 45°
HỌC TỐT
x O y z tt
a. Ta có ; \(\widehat{yOz}=\widehat{xOz}-\widehat{xOy}\)
\(\Rightarrow\widehat{yOz}=90^o-30^o\)
\(\Rightarrow\widehat{yOz}=60^o\)
b.Vì Ot là phân giác \(\widehat{yOz}\)nên \(\widehat{yOt}=\widehat{zOt}=\frac{\widehat{yOz}}{2}=\frac{60^o}{2}=30^o\)
Ta có ; \(\widehat{xOt}=\widehat{xOy}+\widehat{yOt}\)
\(\Rightarrow\widehat{xOt}=30^o+30^o\)
\(\Rightarrow\widehat{xOt}=60^o\)
c. Vì góc xOy = góc tOy = 30độ
mà tia Oy nằm trong góc xOt nên Oy là tia pg góc xOt
Học tốt
\(a)\)\(6\frac{4}{5}-\left(1\frac{2}{3}+3\frac{4}{5}\right)\)
\(=6\frac{4}{5}-1\frac{2}{3}-3\frac{4}{5}\)
\(=\left(6\frac{4}{5}-3\frac{4}{5}\right)-1\frac{2}{3}\)
\(=\left(6+\frac{4}{5}-3-\frac{4}{5}\right)-\frac{5}{3}\)
\(=3-\frac{5}{3}\)
\(=\frac{9}{3}-\frac{5}{3}\)
\(=\frac{4}{3}\)
\(b)\)\(6\frac{5}{7}-(1\frac{3}{4}+2\frac{5}{7})\)
\(=6\frac{5}{7}-1\frac{3}{4}-2\frac{5}{7}\)
\(=\left(6\frac{5}{7}-2\frac{5}{7}\right)-1\frac{3}{4}\)
\(=\left(6+\frac{5}{7}-2-\frac{5}{7}\right)-\frac{7}{4}\)
\(=4-\frac{7}{4}\)
\(=\frac{16}{4}-\frac{7}{4}\)
\(=\frac{9}{4}\)
\(c)\)\(7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)\)
\(=7\frac{5}{9}-2\frac{3}{4}-3\frac{5}{9}\)
\(=\left(7\frac{5}{9}-3\frac{5}{9}\right)-2\frac{3}{4}\)
\(=\left(7+\frac{5}{9}-3-\frac{5}{9}\right)-\frac{11}{4}\)
\(=4-\frac{11}{4}\)
\(=\frac{16}{4}-\frac{11}{4}\)
\(=\frac{5}{4}\)
P/s: Câu b bạn thiếu ngoặc.
Linz
a) 6 và 4/5 - ( 1 và 2/3 + 3 và 4/5)
= 34/5- ( 5/3 + 19/5 )
= 34/5 - 5/3 - 19/5
= (34/5 - 9/5 ) - 5/3
=25/5 -5/3
= 5/1 - 5/3
= 15/3 - 5/3
=10/3
b) 6 và 5/7 - (1 và 3/4 + 2 và 5/7)
=47/7 - (7/4 + 19/7 )
= 47/7 -7/4 - 19/7
= (47/7 -19/7 ) - 7/4
= 28/7 -7/4
=4/1 - 7/4
= 16/4 - 7/4
= 9/4
c) 7 và 5/9 - ( 2 và 3/4 + 3 và 5/9 )
= 68/9 - ( 11/4 + 32/9 )
= 68/9 - 11/4 - 32/9
= (68/9 - 32/9 )- 11/4
= 36/9 -11/4
= 4/1 - 11/4
= 16/4 - 11/4
= 5/4
Chúc bạn học tốt nha!!!!!
a, \(A=\frac{n+7}{n+2}=\frac{n+2+5}{n+2}=\frac{5}{n+2}\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta lập bảng
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b, \(B=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=\frac{7}{n-2}\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng
n - 2 | 1 | -1 | 7 | -7 |
n | 3 | 1 | 9 | -5 |
c, \(C=\frac{2n+13}{n+1}=\frac{2\left(n+1\right)+11}{n+1}=\frac{11}{n+1}\)
\(\Rightarrow n+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng
n + 1 | 1 | -1 | 11 | -11 |
n | 0 | -2 | 10 | -12 |
d) Để D là số nguyên <=> \(\frac{3n+7}{2n+3}\)là số nguyên
<=> \(3n+7⋮2n+3\)
<=> 2(3n + 7) \(⋮\) 2n + 3
<=> 6n + 14 \(⋮\)2n + 3
<=> 3(2n + 3) + 5 \(⋮\)2n + 3
<=> 5 \(⋮\)2n + 3 (vì 3(2n + 3) \(⋮\)2n + 3)
<=> 2n + 3 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng:
2n + 3 | 1 | -1 | 5 | -5 |
n | -1 | -2 | 1 | -4 |
Vậy ....
Làm
2/3 - 3/2 . ( x - 1/2 ) = 5/12
-3/2 . ( x - 1/2 ) = 5/12 - 2/3
- 3/2 . ( x - 1/2 ) = -1/4
x - 1/2 = -1/4 : -3/2
x - 1/2 = 1/6
x = 1/6 + 1/2
x = 2/3
HỌC TỐT
\(\frac{2}{3}-\frac{3}{2}.\left(x-\frac{1}{2}\right)=\frac{5}{12}\)
\(\Leftrightarrow\frac{3}{2}\left(x-\frac{1}{2}\right)=\frac{2}{3}-\frac{5}{12}\)
\(\Leftrightarrow\frac{3}{2}\left(x-\frac{1}{2}\right)=\frac{8}{12}-\frac{5}{12}\)
\(\Leftrightarrow\frac{3}{2}\left(x-\frac{1}{2}\right)=\frac{1}{4}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{1}{4}:\frac{3}{2}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{1}{4}.\frac{2}{3}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{6}+\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{6}+\frac{3}{6}\)
\(\Leftrightarrow x=\frac{2}{3}\)
Vậy\(x=\frac{2}{3}\)
Linz