Chứng minh bất đẳng thức:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\) Với \(a\ge b\ge c>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x+1| = |x(x+1)|
<=> |x+1| = |x|.|x+1|
<=> |x+1| - |x|.|x+1| = 0
<=> |x+1|.(1 - |x|) = 0
Đến đây dễ r`
Cho a là số học sinh giỏi
b là số học sinh khá
Theo đề bài ta có: b= 3a/2 (1)
(b-6)= (a+8)/2 (2)
từ (1) và (2) => 3a/2 -6 = (a+8)/2 => (3a-12)/2 = (a+8)/2 => 3a-12=a+8 => 2a = 20 => a =10
BĐT tương đương
\(a^2+b^2+\frac{a^2b^2+2ab+1}{\left(a+b\right)^2}\ge2\)
<=>\(\left(a+b\right)^2-2+\frac{1}{\left(a+b\right)^2}+\frac{a^2b^2}{\left(a+b\right)^2}+\frac{2ab}{\left(a+b\right)^2}-2ab\ge0\)
<=>\(\left(a+b\right)^2-2.\left(a+b\right).\frac{1}{a+b}+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(ab-\frac{ab}{\left(a+b\right)^2}\right)\ge0\)
<=>\(\left(a+b-\frac{1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(\frac{ab\left(a+b\right)^2-ab}{\left(a+b\right)^2}\right)\ge0\)
<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(\frac{ab\left[\left(a+b\right)^2-1\right]}{\left(a+b\right)\left(a+b\right)}\right)\ge0\)
<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\frac{\left(a+b\right)^2-1}{a+b}.\frac{ab}{a+b}\ge0\)
<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}-\frac{ab}{a+b}\right)^2\ge0\left(\text{luôn đúng}\right)\)
=> dpcm
\(\frac{a}{a+b}\)>= \(\frac{a}{a+a}\)= \(\frac{1}{2}\)( vì a + a >= a + b vì a >= b )
\(\frac{b}{b+c}\) >= \(\frac{b}{b+b}\)= \(\frac{1}{2}\)( vì b + b >= b + c vì b >= c )
\(\frac{c}{c+a}\)>= \(\frac{c}{c+c}\) = \(\frac{1}{2}\)( vì c + c >= c + a vì c>=0 )
Từ 3 điều này suy ra
\(\frac{a}{a+b}\)+ \(\frac{b}{b+c}\)+ \(\frac{c}{c+a}\)>= \(\frac{3}{2}\)
dễ dàng c/m (x+y+z)(1/x+1/y+1/z) \(\ge\) 9,dấu "=" khi x=y=z (*)
a/a+b +b/b+c +c/c+a >= 3/2
<=>(a/b+c + 1) + (b/c+a + 1) + (c/a+b + 1) >= 3/2+1+1+1
<=>(a+b+c)/(b+c) + (a+b+c)/(c+a) + (a+b+c)/(a+b) >= 9/2
<=>2(a+b+c)(1/b+c + 1/c+a + 1/a+b) >= 9/2
<=>[(b+c)+(c+a)+(a+b)](1/b+c + 1/c+a + 1/a+b) >= 9/2 (bđt (*))