1. Tìm số nguyên x lớn nhất để Q có giá trị nguyên Q= \(\frac{x}{x-\sqrt{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xem hình trên và vẽ lại
b)
+) Ta coi mỗi ô vuông trên hình 55 là một hình vuông có cạnh là 1cm1cm.
Từ hình vẽ ta xác định được: A(2;4), B(4;4)A(2;4), B(4;4).
+) Tính độ dài các cạnh của ΔOAB∆OAB:
Dễ thấy AB=4−2=2AB=4−2=2 (cm)(cm).
Gọi CC là điểm biểu diễn số 44 trên trục tung, ta có OC=4cm,AC=2cm;BC=4cmOC=4cm,AC=2cm;BC=4cm
Áp dụng định lý Py-ta-go cho các tam giác vuông OACOAC và OBCOBC, ta có:
OA=√AC2+OC2=√22+42=2√5(cm)OB=√BC2+OC2=√42+42=4√2(cm)OA=AC2+OC2=22+42=25(cm)OB=BC2+OC2=42+42=42(cm)
⇒⇒ Chu vi ΔOABΔOAB là:
CΔOAB=OA+OB+ABCΔOAB=OA+OB+AB
=2+2√5+4√2≈12,13(cm)=2+25+42≈12,13(cm)
+) Tính diện tích ΔOAB∆OAB:
Cách 1:
SΔOAB=SΔOBC−SΔOAC=1/2OC.BC−1/2OC.AC=1/2.42−1/2.4.2=8−4=4(cm2)SΔOAB=SΔOBC−SΔOAC=1/2OC.BC−1/2OC.AC=1/2.42−1/2.4.2=8−4=4(cm2)
Cách 2:
ΔOAB có đường cao ứng với cạnh AB là OC.
⇒SΔOAB=1/2.OC.AB=1/2.4.2=4⇒S∆OAB=1/2.OC.AB=1/2.4.2=4 (cm2)
a,
b,
Từ hình vẽ ta có: yA = yB = 4 suy ra:.
+ Hoành độ của A: 4 = 2.xA => xA = 2 (*)
+ Hoành độ của B: 4 = xB => xB = 4
=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)
- Tìm độ dài các cạnh của ΔOAB
- Tìm độ dài các cạnh của ΔOAB
Cách vẽ:
- Cho x=1x=1 ta được y=√3.1=√3y=3.1=3. Suy ra A(1;√3)A(1;3)
- Cho x=0x=0 ta được y=√.0=0y=.0=0. Suy ra O(0;0)O(0;0)
Vẽ đường thẳng qua O, A được đồ thị hàm số y=√3x.y=3x.
Các bước vẽ:
- Vẽ một hình vuông có độ dài cạnh là 1 đơn vị, có một đỉnh là O, lấy điểm B(1;1)B(1;1). Khi đó, đường chéo OB có độ dài bằng √12+12=√2.12+12=2.
- Vẽ cung tròn tâm OO, bán kính OBOB , ta xác định được điểm CC trên tia OxOx, và ta có OC=√2.OC=2.
- Vẽ một hình chữ nhật có một đỉnh là O, cạnh CD = 1 và cạnh OC = OB = √22 ta được đường chéo OD=√CD2+OC2=√1+(√2)2=√3.OD=CD2+OC2=1+(2)2=3.
- Vẽ cung tròn tâm OO, bán kính ODOD , ta xác định được điểm EE trên tia OyOy, và ta có OE=√3.OE=3.
- Vẽ hình chữ nhật có một đỉnh là O, có một cạnh bằng 1 đơn vị và một cạnh có độ dài bằng OE=√3OE=3 ta được điểm A(1;√3)A(1;3) .
- Vẽ đường thẳng đi qua gốc tọa độ O và điểm A ta được đồ thị của hàm số y=√3xy=3x
+,vẽ hình vuông có đọ dài cạch lá 1đon vị,một đỉnh lá O,ta được đường chéo OB có độ dài =\(\sqrt{2}\)
+,vẽ hình chữ nhạt có 1 đỉnh là O, cạnh CD=1 và cạnh OC=\(\sqrt{2}\),ta được đường chéo ODcó độ dài=\(\sqrt{3}\).
+.vẽ hình chữ nhật có một đỉnh O,một cạnh =1 và 1 cạch =\(\sqrt{3}\),ta được điểm A (1,\(\sqrt{3}\))
+vẽ dduongf thẳng qua góc tọa độ Ovà điểm A ta dduocjw ddof thị của hàm số y=\(\sqrt{3}\)x
Lời giải:
a) - Với hàm số y = 2x
Bảng giá trị:
x | 0 | 1 |
y = 2x | 0 | 2 |
Đồ thị hàm số y = 2x đi qua gốc tọa độ và điểm A( 1;2)
- Với hàm số y = -2x
Bảng giá trị:
x | 0 | 1 |
y = -2x | 0 | -2 |
Đồ thị hàm số y = -2x đi qua gốc tọa độ và điểm B( 1; - 2)
b) - Ta có O(x1 = 0, y1 = 0) và A(x2 = 1, y2 = 2) thuộc đồ thị hàm số y = 2x, nên với x1 < x2 ta được f(x1) < f(x2).
Vậy hàm số y = 2x đồng biến trên R.
- Lại có O(x1 = 0, y1 = 0) và B(x3 = 1, y3 = -2) thuộc đồ thị hàm số y = -2x, nên với x1 < x3 ta được f(x1) < f(x3).
Vậy hàm số y = -2x nghịch biến trên R.
a) Tự vẽ đths :vvv
ĐTHS y = 2x là đường thẳng đi qua (0;0) và (2;1)
ĐTHS y = -2x là đường thẳng đi qua (0;0) và (-2;1)
b) Xét 2 hàm số:
Vì h/s y = 2x có 2 > 0 => HS đồng biến
Vì h/s y = -2x có -2 < 0 => HS nghịch biến
\(A=\frac{n^2+4}{n+5}=\frac{n^2-25+29}{n+5}=n-5+\frac{29}{n+5}\) là phân số rút gọn được suy ra \(\frac{29}{n+5}\)là phân số rút gọn được.
Khi đó \(\left(n+5,29\right)\ne1\)mà \(29\)là số nguyên tố nên ta có \(n+5=29k\Leftrightarrow n=29k-5\).
\(0\le29k-5< 2009\Rightarrow1\le k\le69\)
Vậy có \(69\)số tự nhiên \(n\)thỏa mãn.
1) \(...=\sqrt{\left(\sqrt{m-1}+1\right)^2}-\sqrt{\left(\sqrt{m-1}-1\right)^2}\)
\(=\left|\sqrt{m-1}+1\right|-\left|\sqrt{m-1}-1\right|\)
\(=\sqrt{m-1}+1-\left|\sqrt{m-1}-1\right|\)
Nếu \(\sqrt{m-1}-1\ge0\Rightarrow m\ge2\)
\(...=\sqrt{m-1}+1-\sqrt{m-1}+1=2\)
Nếu \(\sqrt{m-1}-1< 0\Rightarrow m< 2\)
\(...=2\sqrt{m-1}\)
1) bổ sung đk: \(m\ge1\)
2) đk: \(x\ge4\)
\(...=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
Nếu \(x\ge8\)
\(\Rightarrow...=2\sqrt{x-4}\)
Nếu \(x< 8\)
\(\Rightarrow...=4\)
a) Ta có y=f(x)=−1/2x+3y=f(x)=−1/2x+3.
Với y=−1/2x+3y=−1/2x+3 thay các giá trị của xx vào biểu thức của yy, ta được:
+) f(−2,5)=−1/2.(−2,5)+3f(−2,5)=−1/2.(−2,5)+3
=(−0,5).(−2,5)+3=(−0,5).(−2,5)+3=1,25+3=4,25=1,25+3=4,25
+) f(−2)=−1/2.(−2)+3f(−2)=−1/2.(−2)+3
=(−0,5).(−2)+3=1+3=4=(−0,5).(−2)+3=1+3=4.
+) f(−1,5)=−1/2.(−1,5)+3f(−1,5)=−1/2.(−1,5)+3
=(−0,5).(−1,5)+3=(−0,5).(−1,5)+3=0,75+3=3,75=0,75+3=3,75.
+) f(−1)=−1/2.(−1)+3f(−1)=−1/2.(−1)+3
=(−0,5).(−1)+3=0,5+3=3,5=(−0,5).(−1)+3=0,5+3=3,5.
+) f(−0,5)=−1/2.(−0,5)+3f(−0,5)=−1/2.(−0,5)+3
=(−0,5).(−0,5)+3=(−0,5).(−0,5)+3=0,25+3=3,25=0,25+3=3,25.
+) f(0)=−1/2.0+3f(0)=−1/2.0+3=(−0,5).0+3=0+3=3=(−0,5).0+3=0+3=3
+) f(0,5)=−1/2.0,5+3f(0,5)=−1/2.0,5+3
=(−0,5).0,5+3=(−0,5).0,5+3=−0,25+3=2,75=−0,25+3=2,75
+) f(1)=−1/2.1+3f(1)=−1/2.1+3
=(−0,5).1+3=−0,5+3=2,5=(−0,5).1+3=−0,5+3=2,5.
+) f(1,5)=−1/2.1,5+3f(1,5)=−1/2.1,5+3
=(−0,5).1,5+3=−0,75+3=(−0,5).1,5+3=−0,75+3=2,25=2,25
+) f(2)=−1/2.2+3f(2)=−1/2.2+3
=(−0,5).2+3=−1+3=2=(−0,5).2+3=−1+3=2.
+) f(2,5)=−1/2.2,5+3f(2,5)=−1/2.2,5+3
=(−0,5).2,5+3=−1,25+3=(−0,5).2,5+3=−1,25+3=1,75=1,75
Ta có bảng sau:
b)
Nhìn vào bảng giá trị của hàm số ở câu a ta thấy khi xx càng tăng thì giá trị của f(x)f(x) càng giảm. Do đó hàm số nghịch biến trên R
a)
xx | -2,5−2,5 | -2−2 | -1,5−1,5 | -1−1 | -0,5−0,5 | 00 | 0,50,5 | 11 | 1,51,5 | 22 | 2,52,5 |
y=-\dfrac{1}{2} x+3y=− \(\dfrac{1}{2}\)x+3 |
4,254,25 | 44 | 3,753,75 | 3,53,5 | 3,253,25 | 33 | 2,752,75 | 2,52,5 | 2,252,25 | 22 | 1,751,75 |
b) Khi xx lần lượt nhận các giá trị tăng lên thì giá trị tương ứng của hàm số lại giảm đi. Vậy hàm số đã cho nghịch biến trên \mathbb{R}R.
em xin lỗi nhưng em chưa đủ tuổi để làm bài này xin cáo từ
xin lỗi quản lý olm ạ
a) Ta có:
f(−2)=23.(−2)=−43;f(−1)=23.(−1)=−23;f(0)=23.0=0;f(12)=23.12=13;f(1)=23.1=23;f(2)=23.2=43;f(3)=23.3=2.f(−2)=23.(−2)=−43;f(−1)=23.(−1)=−23;f(0)=23.0=0;f(12)=23.12=13;f(1)=23.1=23;f(2)=23.2=43;f(3)=23.3=2.
b) Ta có:
g(−2)=23.(−2)+3=53;g(−1)=23.(−1)+3=73;g(0)=23.0+3=3;g(12)=23.12+3=103;g(1)=23.1+3=113;g(2)=23.2+3=133;g(3)=23.3+3=5.g(−2)=23.(−2)+3=53;g(−1)=23.(−1)+3=73;g(0)=23.0+3=3;g(12)=23.12+3=103;g(1)=23.1+3=113;g(2)=23.2+3=133;g(3)=23.3+3=5.
c) Khi biến xx lấy cùng một giá trị thì giá trị của hàm số y=f(x)y=f(x) luôn nhỏ hơn giá trị tương ứng của hàm số y=g(x)y=g(x) là 3 đơn vị.
\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2-2x+1+y^2+4y+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
x2 + y2 - 2x + 4y + 5 = 0
\(\Leftrightarrow\)( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0
\(\Leftrightarrow\)( x - 1 ) 2 + ( y + 2 ) 2 = 0
Vì ( x - 1 ) 2 \(\ge\)0 \(\forall\)x ; y
Mà ( x - 1 ) 2 + ( y + 2 ) 2 = 0
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy ..................
Đk: x > 0; x \(\ne\)1
Ta có: Q = \(\frac{x}{x-\sqrt{x}}=\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}}{\sqrt{x}-1}=1+\frac{1}{\sqrt{x}-1}\)
Để Q nguyên <=> \(\frac{1}{\sqrt{x}-1}\) nguyên <=> \(1⋮\left(\sqrt{x}-1\right)\)
<=> \(\sqrt{x}-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Lập bảng:
vì x nguyên lớn nhất => x = 4
Vậy ....