\(\left(\dfrac{2}{5}-x\right):\left(-1\dfrac{1}{3}\right)=\dfrac{5}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có một khu du lịch giá vé là342nghìn đồng ông chủ giảm giá vé số lượng người tăng thêm là 14% doanh thu tăng lên 6% hỏi ông chủ đã giảm bao nhiêu tiền
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)\(=k\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)
Thay (1) vào \(2x^2+2y^2-3z^2=-100\)
Có 2(3k)2 +2(4k)2 -3(5k)2 =-100
2.9k2 +2.16k2 -3.25k2=-100
18k2 +32k2 -75k2=-100
-25k2=-100
=>k2= 4
=>\(\left\{{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
TH1 k=2 =>\(\left\{{}\begin{matrix}x=2\cdot3\\y=2\cdot4\\z=2\cdot5\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=6\\y=8\\z=10\end{matrix}\right.\)
TH2 k=-2 =>\(\left\{{}\begin{matrix}x=-2\cdot3\\y=-2\cdot4\\z=-2\cdot5\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=-6\\y=-8\\z=-10\end{matrix}\right.\)
(-32)9 luôn là số âm vì có cơ số âm, số mũ lẻ
1813 luôn là số dương vì có cơ số dương
=> (-32)9 < 1813
The two triangles BAP and BAO have the same height from B, so we have: \(\dfrac{S_{BAP}}{S_{BAO}}=\dfrac{AP}{AO}\)
Similarly, we have: \(\dfrac{S_{CAP}}{S_{CAO}}=\dfrac{AP}{AO}\), from that, we have: \(\dfrac{AP}{AO}=\dfrac{S_{BAP}}{S_{BAO}}=\dfrac{S_{CAP}}{S_{CAO}}=\dfrac{S_{BAP}+S_{CAP}}{S_{BAO}+S_{CAO}}=\dfrac{S_{ABC}}{S_{BAO}+S_{CAO}}\)
Thus, we also have \(\dfrac{BQ}{OB}=\dfrac{S_{ABC}}{S_{BOC}+S_{AOB}}\); \(\dfrac{CR}{OC}=\dfrac{S_{ABC}}{S_{BOC}+S_{AOC}}\)
So we get: \(\dfrac{AP}{AO}+\dfrac{BQ}{OB}+\dfrac{CR}{OC}=\dfrac{S_{ABC}}{S_{COA}+S_{AOB}}+\dfrac{S_{ABC}}{S_{AOB}+S_{BOC}}\)\(+\dfrac{S_{ABC}}{S_{BOC}+S_{AOC}}\)
If \(S_{BOC}=a;S_{COA}=b;S_{AOB}=c\left(a,b,c>0\right)\), then \(P=\dfrac{AP}{AO}+\dfrac{BQ}{OB}+\dfrac{CR}{OC}=\dfrac{S_{ABC}}{b+c}+\dfrac{S_{ABC}}{c+a}+\dfrac{S_{ABC}}{a+b}\)
\(=S_{ABC}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
We have already had the inequality: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) (This is true with all of the positive real number \(x,y,z\). If you don't know about this, please check it on the Internet) \(P\ge S_{ABC}\left(\dfrac{9}{a+b+b+c+c+a}\right)=S_{ABC}.\dfrac{9}{2\left(a+b+c\right)}\)\(=S_{ABC}.\dfrac{9}{2S_{ABC}}=\dfrac{9}{2}\) (vì \(a+b+c=S_{BOC}+S_{COA}+S_{AOB}=S_{ABC}\))
In conclusion, the minimum value of \(\dfrac{AP}{AO}+\dfrac{BQ}{OB}+\dfrac{CR}{OC}\) is \(\dfrac{9}{2}\), happens when \(a=b=c=\dfrac{1}{3}S_{ABC}\) or \(S_{BOC}=S_{COA}=S_{AOC}=\dfrac{1}{3}S_{ABC}\)
Consider \(S_{BOC}=\dfrac{1}{3}S_{ABC}\Leftrightarrow\dfrac{S_{BOC}}{S_{ABC}}=\dfrac{1}{3}\)
We have \(\dfrac{S_{BOP}}{S_{ABP}}=\dfrac{PO}{PA}\) and \(\dfrac{S_{COP}}{S_{ACP}}=\dfrac{PO}{PA}\)
Therefore, we have \(\dfrac{PO}{PA}=\dfrac{S_{BOP}}{S_{ABP}}=\dfrac{S_{COP}}{S_{ACP}}=\dfrac{S_{BOP}+S_{COP}}{S_{ABP}+S_{ACP}}=\dfrac{S_{BOC}}{S_{ABC}}=\dfrac{1}{3}\)
Similarly, we have \(\dfrac{OQ}{BQ}=\dfrac{1}{3};\dfrac{OR}{CR}=\dfrac{1}{3}\)
These means O is the centroid of the triangle ABC.
So in order to minimize the value of \(\dfrac{AP}{AO}+\dfrac{BQ}{OB}+\dfrac{CR}{OC}\), O must be the centroid of the triangle ABC.
a)
Do khi x là số bình phương nên x là số chẵn. Mà 7 là số lẻ
\(\Rightarrow x\in\varnothing\)
\(\Rightarrow x\notinℚ\)
c)
\(x+\dfrac{1}{x}=\dfrac{x}{1}+\dfrac{1}{x}=\dfrac{x.x}{x}+\dfrac{1}{x}=\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{x+1}{1}=x+1\)
Mà đề ra: x khác \(\pm1\Rightarrow x+1\) khác \(\pm1\)
\(\Rightarrow x\in\varnothing\)
\(\Rightarrow x\notinℚ\)
a) \(M\left(x\right)=0\Rightarrow3x-7=0\Rightarrow x=\dfrac{7}{3}\)
Vậy \(x=\dfrac{7}{3}\) là nghiệm của đa thức đã cho.
b) \(N\left(x\right)=0\Rightarrow x^3+2x=0\Rightarrow x\left(x^2+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\left(L\right)\end{matrix}\right.\)
Vậy \(x=0\) là nghiệm của đa thức đã cho.
2/5-x=5/4x (-2/3)
2/5-x= (-5/6)
x=2/5-(-5/6)
x=37/30