Cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ta có: AB//CD
mà E\(\in\)AB; F\(\in\)CD
nên AE//DF; BE//CF
2: Ta có: AE+EB=AB
DF+FC=DC
mà AE=DF và AB=DC
nên EB=FC
3: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
4: Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó BEFC là hình bình hành
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(DP=PC=\dfrac{DC}{2}\)
mà AB=CD
nên AM=MB=DP=PC
Ta có: \(AQ=QD=\dfrac{AD}{2}\)
\(BN=NC=\dfrac{BC}{2}\)
mà AD=BC
nên AQ=QD=BN=NC
Xét ΔAQM vuông tại A và ΔCNP vuông tại C có
AQ=CN
AM=CP
Do đó: ΔAQM=ΔCNP
=>MQ=NP(3)
Xét ΔMBN vuông tại B và ΔPDQ vuông tại D có
BM=DP
BN=DQ
Do đó: ΔMBN=ΔPDQ
=>MN=QP(2)
Xét ΔMAQ vuông tại A và ΔMBN vuông tại B có
MA=MB
AQ=BN
Do đó: ΔMAQ=ΔMBN
=>MQ=MN(1)
Từ (1),(2),(3) suy ra MQ=MN=NP=PQ
=>MNPQ là hình thoi
b: Xét tứ giác BMDP có
BM//DP
BM=DP
Do đó: BMDP là hình bình hành
=>BP//DM
=>KS//GI
Xét tứ giác AQCN có
AQ//CN
AQ=CN
Do đó: AQCN là hình bình hành
=>AN//CQ
=>KI//GS
Xét tứ giác IKSG có
IK//SG
IG//SK
Do đó: IKSG là hình bình hành
a: Sửa đề; \(x^2+x+\dfrac{1}{4}=\dfrac{9}{4}\)
=>\(x^2+x+\dfrac{1}{4}-\dfrac{9}{4}=0\)
=>\(x^2+x-2=0\)
=>(x+2)(x-1)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
b: \(25x^2-16\left(x+2\right)^2=0\)
=>\(\left(5x\right)^2-\left(4x+8\right)^2=0\)
=>\(\left(5x-4x-8\right)\left(5x+4x+8\right)=0\)
=>(x-8)(9x+8)=0
=>\(\left[{}\begin{matrix}x-8=0\\9x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{8}{9}\end{matrix}\right.\)
Bài 2:
c: \(C=27x^3-27x^2y+9xy^2-y^3-121\)
\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot y+3\cdot3x\cdot y^2-y^3-121\)
\(=\left(3x-y\right)^3-121=7^3-121=343-121=222\)
Bài 3:
a: \(x^2-4+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
=(x-2)(x+2+x-2)
=2x(x-2)
b: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-1-y\right)\left(x-1+y\right)\)
c: \(x^3-4x^2-12x+27\)
\(=\left(x^3+27\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
d: \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)^2-5\left(x^2+x\right)+3\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-5\right)+3\left(x^2+x-5\right)\)
\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)(hai góc so le trong, AD//CB)
Do đó: ΔAHD=ΔCKB
=>AH=CK
Ta có: AH\(\perp\)BD
CK\(\perp\)BD
Do đó: AH//CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó:AHCK là hình bình hành
b: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
ta có: AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của HK
c: Xét tứ giác AMCN có
AM//CN
AN//CM
Do đó: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN
=>M,O,N thẳng hàng
Bài 4:
a: \(216x^3+27y^3=27\left(8x^3+y^3\right)\)
\(=27\left[\left(2x\right)^3+y^3\right]\)
\(=27\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
b: \(64a^3-8=8\left(8a^3-1\right)\)
\(=8\left[\left(2a\right)^3-1^3\right]\)
\(=8\left(2a-1\right)\left(4a^2+2a+1\right)\)
c: \(x^3+8=x^3+2^3=\left(x+2\right)\left(x^2-2x+4\right)\)
d: \(27x^3-8y^3=\left(3x\right)^3-\left(2y\right)^3\)
\(=\left(3x-2y\right)\left[\left(3x\right)^2+3x\cdot2y+\left(2y\right)^2\right]\)
\(=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
Bài 5:
a: \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)
\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\)
\(=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\)
\(=2y^2-10xy\)
b: \(\left(x-y\right)^3-3\left(x-y\right)^2\cdot x+3\left(x-y\right)\cdot x^2-x^3\)
\(=\left(x-y-x\right)^3\)
\(=\left(-y\right)^3=-y^3\)
c: \(\left(3x+3\right)^3-2\left(x+1\right)^3-\left(5x-1\right)^2\)
\(=27\left(x+1\right)^3-2\left(x+1\right)^3-\left(5x-1\right)^2\)
\(=25\left(x+1\right)^3-25x^2+10x-1\)
\(=25x^3+75x^2+75x+25-25x^2+10x-1\)
\(=25x^3+50x^2+85x+24\)
d: \(\left(-2x+3\right)^3-\left(x+1\right)^3+\left(3x-1\right)^2\)
\(=\left(-2x+3-x-1\right)\left[\left(-2x+3\right)^2+\left(-2x+3\right)\left(x+1\right)+\left(x+1\right)^2\right]+\left(3x-1\right)^2\)
\(=\left(-3x+2\right)\left(4x^2-12x+9-2x^2+x+3+x^2+2x+1\right)+\left(3x-1\right)^2\)
\(=\left(-3x+2\right)\left(3x^2-9x+13\right)+\left(3x-1\right)^2\)
\(=-9x^3+27x^2-39x+6x^2-18x+26+9x^2-6x+1\)
\(=-9x^3+42x^2-63x+27\)
I prefer living in the countryside rather than in a city. The countryside offers a peaceful, serene environment that allows me to connect with nature and enjoy a slower pace of life. I love the open spaces, fresh air, and the close-knit community that often comes with rural living. It provides a perfect escape from the hustle and bustle of urban life, reducing stress and offering a sense of tranquility. On the other hand, cities can be noisy, crowded, and hectic, which often leads to stress and a lack of privacy. Although cities offer convenience and opportunities, I find the calm and simplicity of the countryside more fulfilling and relaxing.
a: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
=>\(x\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b: \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x+2-x+2\right)=0\)
=>4(x+2)=0
=>x+2=0
=>x=-2
c: \(6x^3+7x^2+2x=0\)
=>\(x\left(6x^2+7x+2\right)=0\)
=>\(x\left(6x^2+4x+3x+2\right)=0\)
=>\(x\left(3x+2\right)\left(2x+1\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\3x+2=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d: \(x^2+4x=7\)
=>\(x^2+4x+4=11\)
=>\(\left(x+2\right)^2=11\)
=>\(\left[{}\begin{matrix}x+2=\sqrt{11}\\x+2=-\sqrt{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{11}-2\\x=-\sqrt{11}-2\end{matrix}\right.\)