a) Cho sin x = \(\frac{\sqrt{3}}{2}\). Tính cos x, tan x, cot x.
b) Cho cos x = \(\frac{4}{5}\).Tính sin x, tan x, cot x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(11:\)
\(\frac{-\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-\sqrt{2}\left(B\right)\)
\(12:B\)
\(13:\sqrt{25x}-\sqrt{9x}=8\)
\(\sqrt{25}\sqrt{x}-\sqrt{9}\sqrt{x}=8\)
\(\sqrt{x}\left(5-3\right)=8\)
\(\sqrt{x}=4< =>x=16\left(C\right)\)
\(14:\frac{4}{\sqrt{5}-1}-\sqrt{5}\)
\(\frac{4-5+\sqrt{5}}{\sqrt{5}-1}\)
\(\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\left(B\right)\)
\(15:\)
\(-\sqrt{a^2\frac{b}{a}}\)
\(-\sqrt{a.b}\left(C\right)\)
\(1:4\left(B\right)\)
\(16:\sqrt{12}-\sqrt{27}+\sqrt{3}\)
\(\sqrt{3}\left(\sqrt{4}-\sqrt{9}+1\right)\)
\(\sqrt{3}\left(2-3+1\right)=0\left(B\right)\)
\(17:\sqrt{18}+\frac{2}{\sqrt{2}}-3\sqrt{8}\)
\(\sqrt{2}\left(\sqrt{9}+1-3\sqrt{4}\right)\)
\(\sqrt{2}.2=2\sqrt{2}\left(D\right)\)
\(18:\sqrt{x^2}=\left|x\right|=13\)
\(x=\pm13\left(D\right)\)
\(19:\left|x-1\right|\left(C\right)\)
\(20:\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(\left|\sqrt{5}-2\right|=\sqrt{5}-2\left(B\right)\)
hok tốt
áp dụng bđt bunhia- cốp xki với bộ số (a,b,c)(1,1,1)
\(\left(a^2+b^2+c^2\right)\left(1+1+1\right)\ge\left(a+b+c\right)^2\)
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(< =>ĐPCM\)
Áp dụng BĐT Cauchy ta có:
\(a^2+b^2\ge2ab\) ; \(b^2+c^2\ge2bc\) ; \(c^2+a^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)=\left(a+b+c\right)^2\)
Dấu "=" xảy ra khi: a = b = c
a) khỏi bàn
b) Ta có: \(\widehat{DOK}=\widehat{DEK}\left(=\frac{1}{2}sđ\widebat{DK}\right)\left(1\right)\)
\(\widehat{DEK}=\widehat{DBC}=\left(\frac{1}{2}sđ\widebat{DC}\right)\left(2\right)\)
Mà OD=OB \(\Rightarrow\Delta ODB\)cân tại O
\(\Rightarrow\widehat{DBC}=\widehat{BDO}\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow\widehat{DOK}=\widehat{BDO}\)Mà 2 góc này ở vị trí so le trong
\(\Rightarrow OK//DB\)
Xét tam giác CBH có: OK//CH ; O là trung điểm của BC
=> K là trung điểm của CH
c từ từ nha chiều làm sau
Đặt \(A=\sqrt{7+4\sqrt{3}}=\sqrt{7+2.2\sqrt{3}}\)
\(=\sqrt{4+2.2\sqrt{3}+3}=\sqrt{\left(2+\sqrt{3}\right)^2}=\left|2+\sqrt{3}\right|=2+\sqrt{3}\)
Đặt \(B=\sqrt{4+\sqrt{15}}\)
\(\sqrt{2}B=\sqrt{8+2\sqrt{15}}=\sqrt{8+2\sqrt{5}\sqrt{3}}\)
\(=\sqrt{5+2\sqrt{5}\sqrt{3}+3}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left|\sqrt{5}+\sqrt{3}\right|\)
\(=\sqrt{5}+\sqrt{3}\Rightarrow B=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{10}+\sqrt{6}}{2}\)
a) Δ AHC ~ Δ CAB (g.g)
vì: \(\hept{\begin{cases}\widehat{C}:chung\\\widehat{AHC}=\widehat{BAC}=90^0\end{cases}}\)
=> \(\frac{HC}{AC}=\frac{AC}{BC}\Leftrightarrow HC\cdot BC=AC^2\Rightarrow b^2=ab'\)
b) Δ AHB ~ Δ CHA (g.g)
vì: \(\hept{\begin{cases}\widehat{ACH}=\widehat{BAH}=\left(90^0-\widehat{HAC}\right)\\\widehat{AHC}=\widehat{AHB}=90^0\end{cases}}\)
=> \(\frac{BH}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=HB\cdot HC\Rightarrow h^2=b'c'\)
c) \(S_{ABC}=\frac{1}{2}AH\cdot BC=\frac{1}{2}AB\cdot AC\)
\(\Rightarrow AH\cdot BC=AB\cdot AC\Rightarrow ah=bc\)
d) \(\frac{1}{b^2}+\frac{1}{c^2}=\frac{b^2+c^2}{b^2c^2}=\frac{a^2}{a^2h^2}=\frac{1}{h^2}\) (theo c)
chị lớp 9 em có lớp 7 thui em k biết nha
đề là rút gọn hả bạn:
\(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(\frac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(1:x< 0\left(B\right)\)
\(2:\left(D\right)\)
\(3:x< 2021\left(C\right)\)
\(4:x\ge15\left(D\right)\)
\(5:\)để pt có nghĩa thì 2x-5>0
\(2x>5< =>x>\frac{5}{2}\)
chọn (C)
\(6:\frac{1}{2}\sqrt{20}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(\frac{1}{2}\sqrt{20}-\sqrt{5}+2\)
\(\sqrt{5}-\sqrt{5}+2=2\)
chọn (B)
\(7:\frac{6xy^2}{x^2-y^2}\sqrt{\frac{\left(x-y\right)^2}{\left(3xy^2\right)^2}}\)
\(\frac{6xy^2}{x^2-y^2}\frac{x-y}{3xy^2}\)
\(\frac{2}{x+y}\)
chọn (B)
\(8:\left(1+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(\frac{3+\sqrt{3}}{\sqrt{3}+1}-1\right)\)
\(\left(1+\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right)\left(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-1\right)\)
\(\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)
\(\sqrt{3}^2-1^2=3-1=2\)
chọn (D)
\(9:M=\left|1-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(M=\sqrt{3}-1+\sqrt{3}-1\)
\(M=2\sqrt{3}-2\)
chọn (A)
\(10:\sqrt{4+\sqrt{x^2-1}}=2\)
\(4+\sqrt{x^2-1}=2^2=4\)
\(\sqrt{x^2-1}=0\)
\(x^2-1=0< =>x=1\)
chọn (A)
a) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{3}{4}=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{cases}}\)
- \(cosx=\frac{1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
- \(cosx=\frac{-1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}=-\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\sqrt{3}}=\frac{-\sqrt{3}}{3}\)
b) Bạn làm tương tự câu a) nha.