RÚt gọn bieur thức:
B=\(\frac{\left(x-1\right)^2\left(\sqrt{x-1}-1\right)+2\left(x-1\right)\sqrt{x-1}-x+3}{\left(x-1\right)^2\sqrt{x-1}+\sqrt{x-1}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này mới nhìn ta có thể nhận thấy vô số nghiệm mà
Ví dụ với x là số nguyên bất kỳ, y là một số nguyên không âm bất kì
=> Ta luôn nhận được \(x^y\) luôn nguyên
=> \(x^y+1\) luôn nguyên
=> z luôn nguyên
Vậy tập nghiệm của PT là: \(\hept{\begin{cases}x=m\\y=n\\z=m^n+1\end{cases}\left(m,n\inℤ;n\ge0\right)}\)
\(\frac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}=\frac{\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{3}}{\sqrt{4}\sqrt{2}-\sqrt{4}\sqrt{3}}\)
\(=\frac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}-\sqrt{3}\right)}=\frac{\sqrt{5}}{2}\)
Trước tiên ta sẽ chứng minh \(\sqrt{2}\)là số vô tỉ.
Giả sử \(\sqrt{2}\)là số hữu tỉ.
Khi đó \(\sqrt{2}=\frac{m}{n}\left(m,n\inℤ,\left(m,n\right)=1\right)\)
\(\Leftrightarrow m^2=2n^2\)
Suy ra \(m^2⋮2\Rightarrow m⋮2\Rightarrow m=2k\)
\(4k^2=2n^2\Leftrightarrow n^2=2k^2\)từ đây cũng suy ra \(n⋮2\)
Khi đó \(m,n\)cùng chia hết cho \(2\)(mâu thuẫn với \(\left(m,n\right)=1\))
Do đó ta có đpcm: \(\sqrt{2}\)là số vô tỉ.
Giả sử \(\sqrt{1+\sqrt{2}}\)là số hữu tỉ.
Khi đó \(\sqrt{1+\sqrt{2}}=\frac{a}{b},\left(a,b\inℤ\right)\)
\(\Leftrightarrow1+\sqrt{2}=\frac{a^2}{b^2}\)
\(\Leftrightarrow\sqrt{2}=\frac{a^2}{b^2}-1\)là số hữu tỉ.
Mà \(\sqrt{2}\)là số vô tỉ do đó mâu thuẫn nên ta có đpcm.
6, \(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)ĐK : \(x\ge0;x\ne4\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-\sqrt{x}-6}{\sqrt{x}-2}\)
7, \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)ĐK : \(x\ge0;x\ne4;9\)
\(=\frac{x-4-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4-x+2\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{1}{\sqrt{x}-3}\)
9, \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x-7\sqrt{x}-4}\)ĐK : \(x\ge0;x\ne\frac{1}{4}\)
\(=\frac{\left(3\sqrt{x}+2\right)\left(\sqrt{x}+4\right)+\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)-x+6\sqrt{x}-5}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{4x+17\sqrt{x}+4}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{\left(\sqrt{x}+4\right)\left(4\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{4\sqrt{x}+1}{2\sqrt{x}-1}\)
8, bạn tự làm nhé
đk: \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)}=\frac{\sqrt{x}+6}{2-\sqrt{x}}\)
đk: \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Phân thức 1 sai mẫu mình sửa lại nhé
\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(1-\sqrt{x}\right)\left(5\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
Vì a2 - b = b2 - c = c2 - a
Ta có a2 - b = b2 - c
=> (a - b)(a + b) = b - c
=> a + b + 1 = \(\frac{a-c}{a-b}\)
Tương tự ta có : b + c + 1 = \(\frac{b-a}{b-c}\)
a + c + 1 =\(\frac{b-c}{a-c}\)
Khi đó (a + b + 1)(b + c + 1)(a + c + 1) = \(\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{b-c}{a-c}=-1\)(đpcm)
a/
BC cố định => B cố định
AB=4 cm không đổi
=> A chạy trên đường tròn tâm B bán kính AB
b/
Từ M dựng đường thẳng // AB cắt BC tại D
=> D là trung điểm của BC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với cạnh thứ 2 thì đi qua trung điểm cạnh còn lại)
=> MD là đường trung bình của tg ABC => \(MD=\frac{AB}{2}\)
Ta có BC cố định =>D cố định
MD không đổi
=> M chạy trên đường tròn tâm D bán kính MD
Ta có: \(a^2-b=b^2-c\Leftrightarrow a^2-b^2=b-c\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\Rightarrow a+b=\frac{b-c}{a-b}\)
Tương tự CM được: \(b+c=\frac{c-a}{b-c}\) và \(c+a=\frac{a-b}{c-a}\)
Khi đó:
\(\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)
\(=\left(\frac{a-b}{c-a}+1\right)\left(\frac{c-a}{b-c}+1\right)\left(\frac{b-c}{a-b}+1\right)\)
\(=\frac{c-b}{c-a}\cdot\frac{b-a}{b-c}\cdot\frac{a-c}{a-b}=-1\)