K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

đk : \(x\ge3\)

\(\left(1\right)\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(\sqrt{x-3}-1\right)=-x^2+5x-4\)

\(\Leftrightarrow\frac{\left(2x+1\right)-3}{\sqrt{2x+1}+3}+\frac{\left(x-3\right)-1}{\sqrt{x-3}+1}=-\left(x-1\right)\left(x-4\right)\)

\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{x-3}+1}=\left(-x+1\right)\left(x-4\right)\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}+x-1\right)=0\)

\(\Leftrightarrow\left(x-4\right).f\left(x\right)=0\)

<=> x - 4 = 0 ( vì khji \(x\ge3\)thì \(f\left(x\right)>0\))

<=> x = 4 ( tmđk )

Vậy x = 4 là nghiệm của pt đã cho 

25 tháng 6 2021

đk: \(x\ge3\)

\(PT\Leftrightarrow\left(x^2-5x+4\right)+\left(\sqrt{2x+1}-3\right)+\left(\sqrt{x-3}-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)+\frac{2x-8}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{x-3}+1}=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}\right)=0\)

Vì \(x\ge3\) theo đk nên: \(x-1+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}>0\)

\(\Rightarrow x-4=0\Rightarrow x=4\)(tm)

Vậy x = 4

25 tháng 6 2021

chịu rồi , nhiều quá

25 tháng 6 2021

Câu 1 

\(AC^2=CH\cdot CB\)   

\(6^2=4\cdot BC\)   

\(36=4\cdot BC\)   

\(BC=9\)   ( Chọn C ) 

26 tháng 6 2021

Đặt  \(\hept{\begin{cases}AB=x\\AC=y\end{cases}\left(x,y>0\right)}\)

Theo định lí Thales \(\frac{EF}{AB}=\frac{CF}{CA}\Rightarrow\frac{AB-EF}{AB}=\frac{CA-CF}{CA}\)

Hay \(\frac{x-2}{x}=\frac{2}{y}\Leftrightarrow xy=2\left(x+y\right)\left(1\right)\)

Theo định lí Pytagoras: \(AB^2+AC^2=BC^2\)hay \(x^2+y^2=45\left(2\right)\)

Từ (1),(2); ta có hệ phương trình: \(\hept{\begin{cases}xy=2\left(x+y\right)\\x^2+y^2=45\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2-45=0\\x^2+2xy+y^2-4\left(x+y\right)-45=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2-45=0\\\left(x+y\right)^2-4\left(x+y\right)-45=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x^2+y^2-45=0\end{cases}}\)(Vì x,y dương)

\(\Leftrightarrow\hept{\begin{cases}y=9-x\\x^2+\left(9-x\right)^2-45=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=9-x\\x=6\left(h\right)x=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\left(h\right)\hept{\begin{cases}x=3\\y=6\end{cases}}\)

Vậy \(AB=3,AC=6\) hoặc \(AB=6,AC=3.\)

25 tháng 6 2021

+) Ta có \(\sqrt{4a\left(3a+b\right)}\le\frac{4a+\left(3a+b\right)}{2}=\frac{7a+b}{2}\)

\(\Rightarrow\sqrt{a\left(3a+b\right)}\le\frac{7a+b}{4}\left(2\right)\)

+) Tương tự ta lại có :

\(\sqrt{b\left(3b+a\right)}\le\frac{7b+a}{4}\left(3\right)\)

+) Từ (2) và (3) ta có :

\(VT\left(1\right)\ge\frac{a+b}{\frac{7a+b}{4}+\frac{7b+a}{4}}=\frac{1}{2}\left(đpcm\right)\)

25 tháng 6 2021

Ta có: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\)

\(=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\ge\frac{2\left(a+b\right)}{\frac{1}{2}\left(4a+3a+b\right)+\frac{1}{2}\left(4b+3b+a\right)}\) (Cauchy)

\(=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi: a = b

26 tháng 6 2021

A B C M I N P

a) Ta có: \(BC=\sqrt{AB^2+AC^2}=10\)

\(\frac{PA}{PC}=\frac{BA}{BC}\Rightarrow\frac{PA}{CA}=\frac{BA}{BA+BC}\Rightarrow PA=\frac{BA.CA}{BA+BC}=\frac{6.8}{6+10}=3\)

\(BP=\sqrt{AB^2+AP^2}=3\sqrt{5}\)

\(\frac{BI}{PI}=\frac{AB}{AP}\Rightarrow\frac{BI}{BP}=\frac{AB}{AB+AP}\Rightarrow BI=\frac{AB.BP}{AB+AP}=\frac{6.3\sqrt{5}}{6+3}=2\sqrt{5}\)

Ta thấy: \(\frac{BI}{BM}=\frac{2\sqrt{5}}{5}=\frac{6}{3\sqrt{5}}=\frac{BA}{BP}\), suy ra \(\Delta BAP~\Delta BIM\)(c.g.c)

Vậy \(\widehat{BIM}=\widehat{BAP}=90^0.\)

b) Vẽ đường tròn tâm M đường kính BC, BI cắt lại (M) tại N.

Ta thấy \(\widehat{BIM}=\widehat{BNC}=90^0\), suy ra MI || CN, vì M là trung điểm BC nên I là trung điểm BN (1)

Dễ thấy \(\widehat{NIC}=\frac{1}{2}\widehat{ABC}+\frac{1}{2}\widehat{ACB}=\widehat{NCI}\), suy ra NI = NC (2)

Từ (1),(2) suy ra \(\tan\frac{\widehat{ABC}}{2}=\tan\widehat{NBC}=\frac{NC}{NB}=\frac{NI}{NB}=\frac{1}{2}\)

Suy ra \(\tan\widehat{ABC}=\frac{2\tan\frac{\widehat{ABC}}{2}}{1-\tan^2\frac{\widehat{ABC}}{2}}=\frac{4}{3}=\frac{AC}{AB}\)

\(\Rightarrow\frac{AC^2}{AB^2+AC^2}=\frac{16}{9+16}=\frac{16}{25}\Rightarrow\frac{AC}{BC}=\frac{4}{5}\)

Vậy \(AB:AC:BC=3:4:5\)

25 tháng 6 2021

Đặt \(u=\sqrt{x-2}\)

+) u > 0

\(+)x=u^2+2\Rightarrow A=\frac{\left(u^2+2\right)+3u}{\left(u^2+2\right)+4u+1}=\frac{u^2+3u+2}{u^2+4u+3}\)

                                       \(=\frac{\left(u+1\right)\left(u+2\right)}{\left(u+1\right)\left(u+3\right)}=\frac{u+2}{u+3}=1-\frac{1}{u+3}\)

+) Vì \(u\ge0\)nên \(u+3\ge3\)

\(\Rightarrow\frac{1}{u+3}\le\frac{1}{3}\)hay \(-\frac{1}{u+3}\ge-\frac{1}{3}\)

\(\Rightarrow A\ge1-\frac{1}{3}=\frac{2}{3}\)

+) Khi x = 2 thì \(A=\frac{2}{3}\)

Vậy min \(A=\frac{2}{3}\)

DD
26 tháng 6 2021

ĐK: \(x\ge0\)

do đó \(7\sqrt{x}\ge0,x+5\sqrt{x}+9\ge0\).

Với \(x=0\)thỏa mãn. 

Với \(x>0\)để \(\frac{7\sqrt{x}}{x+5\sqrt{x}+9}\)là số nguyên thì \(7\sqrt{x}\ge x+5\sqrt{x}+9\)

\(\Leftrightarrow x-2\sqrt{x}+9\le0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+8\le0\)(vô nghiệm) 

Vậy \(x=0\)là giá trị duy nhất thỏa mãn ycbt. 

26 tháng 6 2021

Kẻ \(AH\perp BC\)tại \(H\) thì \(DI//AH\).

Xét \(\Delta HAC\)có:

 \(DI//AH\)(chứng minh trên).

\(AI=CI\)(giả thiết).

\(\Rightarrow HD=CD\)\(\left(D\in BC\right)\)(tính chất).

Xét \(\Delta ABC\)vuông tại \(A\)có đường cao \(AH\)\(\left(H\in BC\right)\)(hình vẽ trên).

\(\Rightarrow AB^2=BH.BC\)(hệ thức lượng trong tam giác vuông).

\(\Rightarrow AB^2=\left(BD-DH\right)\left(BD+CD\right)\).

\(\Rightarrow AB^2=\left(BD-CD\right)\left(BD+CD\right)\)(vì \(CD=DH\)).

\(\Rightarrow AB^2=BD^2-CD^2\)(điều phải chứng minh).

26 tháng 6 2021

A B C I D H

25 tháng 6 2021

a) \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+4\sqrt{3}}}\)

\(=\sqrt{5-\sqrt{12+4\sqrt{3}+1}}=\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}\)

\(=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)