K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

Vì AB < AC nên trên cạnh AC lấy điểm F sao cho AB = AF

=> Tam giác ABF cân tại A

Ta có: AD = AE => BD = FE => BDEF là hình thang cân => BE = FD

Xét: Tam giác ABF cân tại A, ta có: AFB là góc ở đáy nên là góc nhọn

=> \(\widehat{AFD\:}\)là góc nhọn

=> \(\widehat{DFC}\)là góc tù

Vậy: CD > FD = BE

27 tháng 6 2021

e cần gấp câu b,c,c ạ

27 tháng 6 2021

\(\frac{-5\sqrt{x}+4}{3\sqrt{x}-2}+\frac{6\sqrt{x}+4}{2\sqrt{x}+3}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)

\(\frac{\left(-5\sqrt{x}+4\right)\left(2\sqrt{x}+3\right)+\left(6\sqrt{x}+4\right)\left(3\sqrt{x}-2\right)}{6x+5\sqrt{x}-6}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)

\(\frac{-10x-7\sqrt{x}+12+18x-8}{6x+5\sqrt{x}-6}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)

\(\frac{8x-7\sqrt{x}+4}{6x+5\sqrt{x}-6}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)

\(\frac{24x-21\sqrt{x}+12+29\sqrt{x}-28}{18x+15\sqrt{x}-18}\)

\(\frac{24x+8\sqrt{x}-16}{18x+15\sqrt{x}-18}\)

\(\frac{24x+24\sqrt{x}-16\sqrt{x}-16}{18x-12\sqrt{x}+27\sqrt{x}-18}\)

\(\frac{24\sqrt{x}\left(\sqrt{x}+1\right)-16\left(\sqrt{x}+1\right)}{6\sqrt{x}\left(3\sqrt{x}-2\right)+9\left(3\sqrt{x}-2\right)}\)

\(\frac{\left(\sqrt{x}+1\right)\left(24\sqrt{x}-16\right)}{\left(3\sqrt{x}-2\right)\left(6\sqrt{x}+9\right)}\)

\(\frac{\left(\sqrt{x}+1\right).8\left(3\sqrt{x}-2\right)}{\left(3\sqrt{x}-2\right)\left(6\sqrt{x}+9\right)}\)

\(\frac{8\sqrt{x}+8}{6\sqrt{x}+9}\)

26 tháng 6 2021

đk: \(x\ge1\)

\(PT\Leftrightarrow\left(\sqrt{x-1}-2\right)+\left(\sqrt{2x-1}-3\right)=0\)

\(\Leftrightarrow\frac{x-1-4}{\sqrt{x-1}+2}+\frac{2x-1-9}{\sqrt{2x-1}+3}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{x-1}+2}+\frac{2}{\sqrt{2x-1}+3}\right)=0\)

\(\Rightarrow x-5=0\Rightarrow x=5\left(tm\right)\)

Vậy x = 5

26 tháng 6 2021

\(ĐK:x\ge1\)

\(\Leftrightarrow\left(\sqrt{x-1}-2\right)+\left(\sqrt{2x-1}-3\right)=0\)

\(\Leftrightarrow\frac{x-1-4}{\sqrt{x-1}+2}+\frac{2x-1-9}{\sqrt{2x-1}+3}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{x-1}+2}+\frac{2}{\sqrt{2x-1}+3}\right)=0\)(*)

Dễ thấy với mọi x thỏa đk thì \(\frac{1}{\sqrt{x-1}+2}+\frac{2}{\sqrt{2x-1}+3}>0\)

nên (*) <=> x - 5 = 0 <=> x = 5 (tm)

Vậy pt có nghiệm duy nhất x = 5

DD
26 tháng 6 2021

\(\frac{x^2-3y}{x\left(1-3y\right)}=\frac{y^2-3x}{y\left(1-3x\right)}\)

\(\Rightarrow\left(x^2-3y\right)\left(y-3xy\right)=\left(y^2-3x\right)\left(x-3xy\right)\)

\(\Leftrightarrow x^2y-3x^3y-3y^2+9xy^2=xy^2-3xy^3-3x^2+9x^2y\)

\(\Leftrightarrow-3xy\left(x+y\right)\left(x-y\right)+3\left(x+y\right)\left(x-y\right)-8xy\left(x-y\right)=0\)

\(\Leftrightarrow3\left(x+y\right)-3xy\left(x+y\right)-8xy=0\)(vì \(x\ne y\)

\(\Leftrightarrow\frac{x+y}{xy}=x+y+\frac{8}{3}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=x+y+\frac{8}{3}\)

26 tháng 6 2021

14, \(\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\)

\(=\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}\)

\(=\frac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)+\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(3\sqrt{x}+14\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}+14}{5\sqrt{x}-1}\)

27 tháng 6 2021

thank

26 tháng 6 2021

\(\frac{3\sqrt{2}-6}{\sqrt{2}-1}=\frac{3\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=3\)

26 tháng 6 2021

1) \(\frac{3}{\sqrt{2}-1}+\frac{\sqrt{6}+\sqrt{2}}{\sqrt{3}+1}=\frac{3\left(2-1\right)}{\sqrt{2}-1}+\frac{\left(\sqrt{3}+1\right)\sqrt{2}}{\sqrt{3}+1}\)

\(=3\left(\sqrt{2}+1\right)+\sqrt{2}=4\sqrt{2}+3\)

2) \(\frac{1}{\sqrt{5}+2}+\frac{\sqrt{15}+\sqrt{10}}{\sqrt{2}+\sqrt{5}}=\frac{\sqrt{2}+\sqrt{5}+\left(\sqrt{15}+\sqrt{10}\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{2}+\sqrt{5}\right)}\)

\(=\frac{\sqrt{2}+\sqrt{5}+5\sqrt{3}+2\sqrt{15}+5\sqrt{2}+2\sqrt{10}}{\left(\sqrt{5}+2\right)\left(\sqrt{2}+\sqrt{5}\right)}\)

...