\(\sqrt{x}=0\) đúng hay sai, vì sao?
ai nhanh mk tick 5 ng đầu tiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk: \(2-m\ne0\Rightarrow m\ne2\)
b) Nếu \(m=4\)
\(\Rightarrow\left(2-4\right)x-4+1=0\)
\(\Leftrightarrow-2x-3=0\Leftrightarrow x=-\frac{3}{2}\)
Ta có: \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(=\frac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\frac{\sqrt{5-2\sqrt{5}+1}+\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\sqrt{10}\)
Đặt \(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(\Rightarrow A^2=\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=\left(\sqrt{3-\sqrt{5}}\right)^2+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+\left(\sqrt{3+\sqrt{5}}\right)^2\)
\(=\left|3-\sqrt{5}\right|+2\sqrt{9-5}+\left|3+\sqrt{5}\right|\)
\(=3-\sqrt{5}+2\sqrt{4}+3+\sqrt{5}=6+4=10\)
Vì \(\hept{\begin{cases}\sqrt{3-\sqrt{5}}>0\\\sqrt{3+\sqrt{5}}>0\end{cases}}\Rightarrow\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}>0\)
=> A > 0 mà A2 = 10 => A = √10
\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\)\(\frac{8}{1-\sqrt{5}}\)
\(=\frac{\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}\)\(+\frac{8}{1-\sqrt{5}}\)
\(=2\sqrt{5}+\frac{8}{1-\sqrt{5}}\)
\(=\frac{2\sqrt{5}-10+8}{1-\sqrt{5}}\)
\(=\frac{-2\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\)
\(=-2\)
đk: \(x\le\frac{5}{2}\)
Ta có: \(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}=5-2x\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow\orbr{\begin{cases}5-2x=5-2x\\5-2x=2x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x=0\\4x=0\end{cases}}\Rightarrow x=0\)
Vậy x = 0
a) \(\sqrt{9x^2}=6\Leftrightarrow\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
b) \(\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\Leftrightarrow\orbr{\begin{cases}x-2=5\\x-2=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}\)
c) \(\sqrt{x^2-6x+9}=3\Leftrightarrow\left|x-3\right|=3\Leftrightarrow\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)
d) \(\sqrt{x^2+4x+4}-2x=3\Leftrightarrow\left|x+2\right|=2x+3\Leftrightarrow\orbr{\begin{cases}x+2=2x+3\\x+2=-2x-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\3x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-\frac{5}{3}\end{cases}}\)
\(a,\sqrt{9x^2}=6\)
\(\sqrt{\left(3x\right)^2}=6\)
\(\left|3x\right|=6\)
\(< =>x=\pm2\)
\(\sqrt{\left(x-2\right)^2}=5\)
\(\left|x-2\right|=5\)
\(\orbr{\begin{cases}x-2=5\\x-2=-5\end{cases}\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)
\(c,\sqrt{x^2-6x+9}=3\)
\(\sqrt{\left(x-3\right)^2}=3\)
\(\left|x-3\right|=3\)
\(\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}\orbr{\begin{cases}x=6\\x=0\end{cases}}}\)
\(d,\sqrt{x^2+4x+4}-2x=3\)
\(\sqrt{\left(x+2\right)^2}=3+2x\)
\(\left|x+2\right|=3+2x\)
dạng 3 của trị tuyệt đối
xét \(3+2x\ge0\)
\(x\ge-\frac{3}{2}\)
\(\orbr{\begin{cases}x+2=3+2x\\x+2=-3-2x\end{cases}\orbr{\begin{cases}x=-1\\-\frac{5}{3}\end{cases}}}\)
\(A=2\sqrt{\left(-3\right)^6}+2\sqrt{\left(-2\right)^4}-4\sqrt{\left(-2\right)^6}\)
\(=2\cdot3^3+2\cdot2^2-4\cdot2^3=30\)
\(B=\sqrt{\left(\sqrt{2}-2\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)
\(=2-\sqrt{2}+3-\sqrt{2}=5-2\sqrt{2}\)
\(C=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=3-\sqrt{3}-1-\sqrt{3}=2-2\sqrt{3}\)
\(D=\sqrt{\left(5+\sqrt{6}\right)^2}=5+\sqrt{6}\)
\(E=\sqrt{17^2}-8^2+\sqrt{3^2+4^2}=17-64+5=-42\)
\(A=2\sqrt{\left(-3^3\right)^2}+2\sqrt{\left(-2^2\right)^2}-4\sqrt{\left(-2^3\right)^2}\)
\(A=2\left|-3^3\right|+2\left|-2^2\right|-4\left|-2^3\right|\)
\(2.27+2.4-4.8\)
\(A=30\)
\(B=\sqrt{\left(\sqrt{2}-2\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)
\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|\)
\(B=2-\sqrt{2}+3-\sqrt{2}\)
\(B=5-2\sqrt{2}\)
\(C=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|\)
\(C=3-\sqrt{3}-1-\sqrt{3}\)
\(C=2-2\sqrt{3}\)
\(D=\sqrt{\left(5+\sqrt{6}\right)^2}\)
\(D=5+\sqrt{6}\)
\(E=\sqrt{17^2}-8^2-\sqrt{3^2+4^2}\)
\(E=17-64-\sqrt{25}=17-64-5=-52\)
\(\sqrt{x}=0\) đúng
Vì
\(\sqrt{x}\ge0\forall x\)
\(\sqrt{x}=0\) là đúng
=> Vì căn của 0 = 0