A=\(\frac{\sqrt{x}+1}{2\sqrt{x}+1}\) với x \(\ge\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + y2 \(\ge\)2
<=> x2 + y2 + 1 \(\ge\)x + y + xy
<=> 2x2 + 2y2 + 2 \(\ge\)2x + 2y + 2xy
<=> 2x2 + 2y2 + 2 - 2x - 2y - 2xy \(\ge\)0
<=> (x2 - 2xy + y2) + (x2 - 2x + 1) + (y2 - 2y + 1) \(\ge\)0
<=> (x - y)2 + (x - 1)2 + (y - 1)2 \(\ge\)0 (đúng) (Dấu "=" xảy ra <=> x = y = 1)
=> BĐT được chứng minh
\(=\sqrt{7}-\sqrt{4-2.2\sqrt{7}+7}\)
\(=\sqrt{7}-\sqrt{\left(2-\sqrt{7}\right)^2}\)
\(=\sqrt{7}-\sqrt{7}+2=2\)
\(\sqrt{7}-\sqrt{11-4\sqrt{7}}\)
\(=\sqrt{7}-\sqrt{\sqrt{7}^2-2\cdot\sqrt{7}\cdot2+2^2}\)
\(=\sqrt{7}-\sqrt{\left(\sqrt{7}-2\right)^2}\)
\(=\sqrt{7}-\left|\sqrt{7}-2\right|\)
\(=\sqrt{7}-\sqrt{7}+2=2\)
ΔABC vuông tại B, áp dụng hệ thức lượng trong tam giác vuông ta có :
\(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BC^2}\Rightarrow BH=\sqrt{\frac{\left(AB\cdot BC\right)^2}{AB^2+BC^2}}=7,2\left(cm\right)\)
a) Xét ΔHBA có ^AHB = 900 ( BH ⊥ AC ) => ΔHBA vuông tại H
Khi đó ta có : \(\sin A=\frac{BH}{AB}=\frac{4}{5};\cos A=\frac{AH}{AB}=\frac{\sqrt{AB^2-BH^2}}{AB}=\frac{3}{5};\tan A=\frac{BH}{AH}=\frac{BH}{\sqrt{AB^2-BH^2}}=\frac{4}{3}\)
(bonus cho cotgA) : \(\cot A=\frac{AH}{BH}=\frac{\sqrt{AB^2-BH^2}}{BH}=\frac{3}{4}\)
b) Vì ΔHBA vuông tại H (cmt) => ^A + ^ABH = 900
Khi đó : \(\sin\widehat{ABH}=\cos A=\frac{3}{5};\cos\widehat{ABH}=\sin A=\frac{4}{5};\tan\widehat{ABH}=\cot A=\frac{3}{4};\cot\widehat{ABH}=\tan A=\frac{4}{3}\)
\(a,\sqrt{x^2+3}=\sqrt{x+3}\)
\(\sqrt{x^2+3}^2=\sqrt{x+3}^2\)
\(\left|x^2+3\right|=\left|x+3\right|\)
\(\orbr{\begin{cases}x^2+3=x+3\\x^2+3=-x-3\end{cases}\orbr{\begin{cases}x^2=x\\x^2=-x-6\end{cases}}}\)
\(\orbr{\begin{cases}x=1\\x^2+x+6=0\end{cases}}\)
\(\orbr{\begin{cases}x=1\\x^2+x+\frac{1}{2}+\frac{11}{2}=0\end{cases}}\)
\(\orbr{\begin{cases}x=1\left(TM\right)\\\left(x+\frac{1}{4}\right)^2+\frac{11}{2}=0\left(ktm\right)\end{cases}}\)
\(b,\sqrt{3x+2}^2=\sqrt{x}^2\)
\(\left|3x+2\right|=\left|x\right|\)
\(\orbr{\begin{cases}3x+2=x\\3x+2=-x\end{cases}\orbr{\begin{cases}2x+2=0\\4x+2=0\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=-\frac{1}{2}\left(TM\right)\end{cases}}}}\)
\(c,\sqrt{3-x}^2=\sqrt{x-3}^2\)
\(\left|3-x\right|=\left|x-3\right|\)
\(\orbr{\begin{cases}3-x=x-3\\3-x=3-x\end{cases}}\)
\(\orbr{\begin{cases}x=3\left(TM\right)\\3=3-0x\left(KTM\right)\end{cases}}\)
\(1=\sqrt{1}\)
\(\sqrt{1}< \sqrt{2}\)
\(\Rightarrow1< \sqrt{2}\)
\(2=1+1\)
\(1+1< \sqrt{2}+1\)
\(\Rightarrow2< \sqrt{2}+1\)
\(7=\sqrt{49}\)
\(5\sqrt{2}=\sqrt{50}\)
\(\sqrt{49}< \sqrt{50}\Rightarrow7< 5\sqrt{2}\)
\(7=\sqrt{49}\)
\(\sqrt{49}>\sqrt{47}\)
\(\Rightarrow7>\sqrt{47}\)
\(1=2-1=\sqrt{4}-1\)
\(\sqrt{4}-1>\sqrt{3}-1\)
\(\Rightarrow1>\sqrt{3}-1\)
\(2\sqrt{31}=\sqrt{124}\)
\(10=\sqrt{100}\)
\(\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)
\(2.\)
\(a,1=\sqrt{1}\)
\(1< 2< =>\sqrt{1}< \sqrt{2}< =>1< \sqrt{2}\)
\(b,2-\sqrt{2}-1\)
\(1-\sqrt{2}\)
mà \(1< \sqrt{2}< =>1-\sqrt{2}< 0\)
\(2< \sqrt{2}+1\)
c, 7 và \(5\sqrt{2}\)
\(7=\sqrt{49}\)
\(5\sqrt{2}=\sqrt{50}< =>\sqrt{49}< \sqrt{50}\)
\(< =>7< 5\sqrt{2}\)
d, 7 và \(\sqrt{47}\)
\(7=\sqrt{49}< =>\sqrt{49}>\sqrt{47}\)
\(7>\sqrt{47}\)
e, 1 và \(\sqrt{3}-1\)
\(1-\sqrt{3}+1=2-\sqrt{3}=\sqrt{4}-\sqrt{3}>0\)
\(1>\sqrt{3}-1\)
f,\(2\sqrt{31}\)và \(10\)
\(2\sqrt{31}=\sqrt{124}\)
\(10=\sqrt{100}< =>\sqrt{124}>\sqrt{100}\)
\(2\sqrt{31}>10\)
\(3.A=\sqrt{1-4a+4a^2}-2a\)
\(A=\sqrt{\left(1-2a\right)^2}-2a\)
\(A=\left|1-2a\right|-2a\)
kết hợp với ĐKXĐ \(x\ge0,5\)
\(A=2a-1-2a=-1\)
\(b,B=\sqrt{x-2+2\sqrt{x-3}}\)
\(B=\sqrt{x-3+2\sqrt{x-3}+1}\)
\(B=\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(B=\left|\sqrt{x-1}+1\right|\)
kết hợp đkxđ
\(B=\sqrt{x-1}+1\)
\(C=\sqrt{x-2\sqrt{x}+1}+\sqrt{x+2\sqrt{x}+1}\)
\(C=\sqrt{\left(\sqrt{x}-1\right)^2}+\sqrt{\left(\sqrt{x}+1\right)^2}\)
\(C=\left|\sqrt{x}-1\right|+\left|\sqrt{x}+1\right|\)
\(TH1:0\le x\le1\)
\(C=1-\sqrt{x}+\sqrt{x}+1=2\)
\(TH2:x>1\)
\(C=\sqrt{x}-1+\sqrt{x}+1=2\sqrt{x}\)
\(D=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(D=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(D=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
kết hợp với đkxđ
\(TH1:1\le x\le4\)
\(D=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(TH2:x>4\)
\(D=\sqrt{x-1}+1+\sqrt{x-1}+1=2\sqrt{x-1}\)
Với x ≥ 0
⇒ √xx ≤ 2√xx
⇔ √xx + 1 ≤ 2√xx + 1
Vậy A lớn nhất khi dấu bằng xảy ra √xx = 2√xx
⇔ x = 0
MaxAMaxA=1 khi x = 0
Ta có: \(A-1=\frac{\sqrt{x}+1}{2\sqrt{x}+1}-1=\frac{\sqrt{x}+1-2\sqrt{x}-1}{2\sqrt{x}+1}=-\frac{\sqrt{x}}{2\sqrt{x}+1}\le0\)
\(\Rightarrow A\le1\)
Vậy Amax=1 \(\Leftrightarrow x=0\)