Cho \(\Delta ABC\)có BC=12cm. Gọi I là trung điểm của AC. Từ I kẻ đường thẳng song song với BC cắt AB tại K
a) Tính độ dài IK
b) Gọi M, N là trung điểm của IB và KC. Tính độ dài MN
mn giúp mk nha, mk đang cần gấp, ai làm đúng mk sẽ tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a) \(x^2+4x-5=x^2-x+5x-5=x\left(x-1\right)+5\left(x-1\right)=\left(x+5\right)\left(x-1\right)\)
b) \(2x^2-14x+20=2x^2-4x-10x+20=2x\left(x-2\right)-10x\left(x-2\right)=2\left(x-5\right)\left(x-2\right)\)
c) \(3x^2+8x+5=3x^2+3x+5x+5=3x\left(x+1\right)+5\left(x+1\right)=\left(3x+5\right)\left(x+1\right)\)
d) \(6x^2-xy-7y^2=6x^2+6xy-7xy-7y^2=6x\left(x+y\right)-7y\left(x+y\right)\)
\(=\left(6x-7y\right)\left(x+y\right)\)
Bài 4:
a) \(x^3-6x^2+12x-8=x^3-2.3.x^2+3.2^2.x-2^3=\left(x-2\right)^3\)
b) \(\left(x-1\right)^3+\left(3-x\right)^3=\left(x-1+3-x\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(3-x\right)+\left(3-x\right)^2\right]\)
\(=2\left(x^2-2x+1+x^2-4x+3+x^2-6x+9\right)\)
\(=2\left(3x^2-12x+13\right)\)
c) \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
a, 5 .(m-n)
b, -2.(x+y)
c,-7.(x-y)
d, \(5x^2.\left(2x-3\right)\)
e,\(x.\left(x-y\right)\)
f,\(3x^2.\left(3x^2-2\right)\)
g,\(\left(x-3\right).\left(x-5\right)\)
l,\(5\left(x-2\right)\)
(x+1)3-27
= (x+1)3-33
=(x+1-3)((x+1)2+x+1.3+32)
=(x-2)(x2+x+13)
-Học tốt-
Xét △BDE, có :
N là tđ của DE (gt)
I là tđ của BE (gt)
⇒ NI là đường trung bình của △BDE
⇒NI=BD/2 (tính chất)
Xét △DEC, có :
N là tđ của DE (gt)
K là tđ của CD (gt)
⇒ NK là đường trung bình của △DEC
⇒NK=CE/2 (tính chất)
Xét △BEC, có :
M là tđ của BC (gt)
I là tđ của BE (gt)
⇒ MI là đường trung bình của △BEC
⇒MI=CE/2 (tính chất)
Xét △BDC, có :
M là tđ của BC (gt)
K là tđ của CD (gt)
⇒ MK là đường trung bình của △BDC
⇒MK=BD/2 (tính chất)
Có:
NI=BD/2 (cmt)
NK=CE/2 (cmt)
MI=CE/2 (cmt)
MK=BD/2 (cmt)
BD=CE(gt)
⇒NI=NK=MI=MK
Xét tứ giác MINK, có :
NI=NK=MI=MK (cmt)
⇒Tứ giác MINK là hình thoi (DHNB)
HT
Xét tam giác BDE có :
I là trung điểm của DE ( gt )
M là trung điểm của BE ( gt )
=> IM là đường TB
=> IM = 1/2 BD ( tính chất đường TB )
CMTT : ta có NK = 1/2 BD
IN = 1/2 CE
NK = 1/2 CE
Mà BD = CE ( gt )
=> IM = MK = IN = NK
=> Tứ giác IMKN là hình thoi ( tứ giác có 4 cạnh bằng nhau )
=> IK ⊥ MN ( tính chất hình thoi )
a, Xét tam giác BEC và tam giác AEK có:
EB=EK (gt)
góc BEC=góc AEK (đối đỉnh)
EA=EC (gt)
Do đó: tam giác BEC=tam giác AEK (c.g.c)
Suy ra: BC=AK (2 cạnh tương ứng)
b, Xét tam giác ABC cân tại A có AM là đường phân giác tại đỉnh A nên AM đồng thời là đường cao và là đường trung tuyến ứng với cạnh BC
Vậy AM vuông góc với BC (1) và M là trung điểm của BC
Tam giác BEC=Tam giác AEK (cmt) suy ra:góc BCE=góc AKE
Do đó: AK song song với BC. (2) (vì có 2 góc so le trong bằng nhau)
Từ (1) và (2) thì AM vuông góc với AK
c, M là trung điểm của BC(gt) nên MB=MC= 1/2 BC= 1/2 .12 =6(cm)
AM vuông góc với BC(cmt) suy ra: tam giác AMB vuông tại M
Do đó: AM^2 +BM^2 =AB^2
AM^2 + 6^2 =10^2 (vì BM= 6cm,AB=10cm)
AM^2 + 36=100
AM^2 =64
AM=8 (cm)
Xét tam giác ABC có 2 đường trung tuyến AM và BE cắt nhau tại O nên O là trọng tâm của tam giác ABC
Vậy OM =1/3 AM =1/3 .8 =8/3 (cm)
MIB cân tại M vì góc MIB= góc MBI
Nên MB=MI=12cm
=> MI//AC, ta có:
AMAB=IMBC=1230=35AMAB=IMBC=1230=35
⇒AB−12AB=35⇒AB=30(cm)⇒AB−12AB=35⇒AB=30(cm)
BD là phân giác ngoài của góc ABC, ta có:
ADCD=ABBC=3020=32ADCD=ABBC=3020=32
Do đó BC // DN, ta lại có:
ANBN=ADCN=32ANBN=ADCN=32
⇒ABBN=12;30BN=12⇒ABBN=12;30BN=12
Do đó BN=60(cm). Từ đó ta có: MN=72(cm)
b) Ta có EF//AB nên:
IAIC=ABEC(1)IAIC=ABEC(1)vàADCD=ABCF(2)ADCD=ABCF(2)
Do đó BI và BD là phân giác trong và ngoài của góc B trong tam giác ABC, ta có: IAIC=DADC(3)IAIC=DADC(3)
Từ (1), (2) và (3) ta có: ABEC=ABCFABEC=ABCFdo đó EC=EF
Từ IAIC=BIIE⇒AI.IE=BI.IC