12 đội bóng thi đấu với nhau theo vòng tròn (hai đội khác nhau thi đấu với nhau đúng một lần). CMR: Sau 5 vòng đấu, không có ba đội bóng chưa thi đấu đôi một với nhau.
Mn giúp mình với, cảm ơn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}+\sqrt{1,6}+3\sqrt{0,4}\right)\)
\(=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}+\frac{2\sqrt{10}}{5}+\frac{3\sqrt{10}}{5}\right)\)
\(=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{2}+\frac{5\sqrt{10}}{5}\right)=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{10}\right)=10-2=8\)
Cho tam giác ABC cân tại A, có ∠A = 20◦ , độ dài BC = a, AC = AB = b. Chứng minh rằng a3 + b3 = 3ab2
\(25t^2-20t=9-12\)
\(\Leftrightarrow25t^2-20t=-3\)
\(\Leftrightarrow25t^2-20t+3=0\)
\(\Leftrightarrow25t^2-5t-15t+3=0\)
\(\Leftrightarrow5t\left(5t-1\right)-3\left(5t-1\right)=0\)
\(\Leftrightarrow\left(5t-1\right)\left(5t-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5t-1=0\\5t-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{5}\\t=\frac{3}{5}\end{cases}}}\)
Vì \(t\ge\frac{3}{5}\) nên \(t=\frac{3}{5}\) thoả mãn đề bài.
Gọi đường thẳng đó là d.
Vì \(A\in d\) nên:
\(-4=a.1-2\Rightarrow a=-2\)
Vậy đường thẳng d có pt: \(y=-2x-2\)
Ủa đúng không ta;vvv?
Ta có : \(ab+bc+ca=0\)
<=> \(abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\left(\text{vì }a;b;c\ne0\right)\)
<=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{ab}.\left(-\frac{1}{c}\right)\left(\text{vì }\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\right)\)
<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Khi đó \(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)