Cho hình thang ABCD.Đường phân giác của góc A cắt đường phân giác của góc D lại E.
Chứng minh rằng trong hình thang các tia phân giác của hai góc cùng một cạnh bên vuông góc với nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+8x+15=x^2+3x+5x+15=\left(x+3\right)\left(x+5\right)\)
b) \(x^2+3x+2=x^2+2x+x+2=\left(x+1\right)\left(x+2\right)\)
c) \(-x^2+7x-6=-x^2+x+6x-6=\left(-x+6\right)\left(x-1\right)\)
d) \(5x^3y-10x^2y^2+5xy^3=5xy\left(x^2-2xy+y^2\right)=5xy\left(x-y\right)^2\)
e) \(2x^2+7x-15=2x^2-3x+10x-15=\left(2x-3\right)\left(x+5\right)\)
\(ax^2+a-axy+2ax-ay\)
\(a\left(x^2+2x+1\right)-ay\left(x+1\right)\)
\(a\left(x+1\right)^2-ay\left(x+1\right)\)
\(\left(x+1\right)\left[a\left(x+1\right)-ay\right]\)
\(\left(x+1\right)\left(ax+a-ay\right)\)
\(a\left(x+1\right)\left(x+1-y\right)\)
Ta xét VT:
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2b-a^2c+b^2c-ab^2+ac^2-bc^2\)
Ta xét VP:
\(\left(a-b\right)\left(b-c\right)\left(a-c\right)=\left(ab-ac-b^2+bc\right)\left(a-c\right)\)
\(=a^2b-a^2c-ab^2+abc-abc+ac^2+b^2c-bc^2\)
\(=a^2b-a^2c+b^2c-ab^2+ac^2-bc^2\)
Ta thấy: VT = VP
\(\Rightarrowđpcm\)
Ta có
\(\widehat{A}+\widehat{D}=180^o\) (Hai dt // bị cắt bởi 1 đường thẳng tạo thành 2 góc trong cùng phía bù nhau)
\(\widehat{DAE}=\frac{\widehat{A}}{2}\)
\(\widehat{ADE}=\frac{\widehat{D}}{2}\)
\(\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}=\frac{180^o}{2}=90^o\)
Xét tg AED có
\(\widehat{DAE}+\widehat{ADE}=90^o\Rightarrow\widehat{AED}=90^o\Rightarrow AE\perp DE\)