x^2-9 phân tích nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(^{x^2-x-6=\left(x^2-3x\right)+\left(2x-6\right)=x\left(x-3\right)+2\left(x-3\right)=\left(x-3\right)\left(x+2\right)}\)
x^2-x-6=x^2-3x+2x-6
=(x^2-3x)+(2x-6)
=x(x-3)+2(x-3)
=(x+2).(x-3)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
=\(n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)-5n\left(n-1\right)\left(n+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)-5n\left(n-1\right)\left(n+1\right)\)
Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là 5 số nguyên dương liên tiếp \(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)(1)
Do \(5⋮5\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮5\)(2)
Từ (1) và (2) => ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-3\right)^3+\left(2-x\right)^3\)
\(\left(x-3+2-x\right)\left(x^2-3x+9-2x+x^2+6-3x+x^2-2x+4\right)\)
\(-\left(3x^2-10x+19\right)\)
\(10x-3x^2-19\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x [x - 1] + x [ x + 3 ]
= x [ x - 1 + x + 3 ]
= x [ 2 x + 2 ]
= 2 x [ x + 2 ]
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4-2x^3+x^2-2x\)
\(x^2\left(x^2+1\right)-2x\left(x^2+1\right)\)
\(\left(x^2+1\right)\left(x^2-2x\right)\)
\(x\left(x^2+1\right)\left(x-2\right)\)
x^2-9=x^2-3^2
=(x-3).(x+3)
`x^2-9=x^2 - 3^2=(x-3)(x+3)`