K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2024

@Nguyễn Thị Thương Hoài

@Nguyễn Lê Phước Thịnh

@Lê Minh Vũ

.... Giúp em với ạ!!

GIÚP EM VỚI Ạ!!!!EM CẢM ƠN

1
12 tháng 11 2024

2:

a: \(-3\in Z\)

b: \(0\in Z\)

c: \(4\in Z\)

d: \(-2\notin N\)

6: 3<5; -1>-3; -5<2; 5>-3

4: 

a: Vì A nằm ở điểm -2 và O nằm ở điểm 0 nên khoảng cách từ điểm O đến điểm A là:

|-2-0|=|-2|=2

b: Các điểm cách O một khoảng bằng 5 đơn vị trên trục số là các điểm ở vị trí số -5 và số 5

13 tháng 11 2024

    Olm chào em, ghép như trong hình là hình nào em nhỉ. Ở đây chưa có hình.

12 tháng 11 2024

\(x^2y\cdot\dfrac{2}{3}xz^3\)

\(=\dfrac{2}{3}\cdot\left(x^2\cdot x\right)\cdot y\cdot z^3\)

\(=\dfrac{2}{3}x^3yz^3\)

13 tháng 11 2024

\(\dfrac{x}{y}=\dfrac{y}{10}=\dfrac{10}{x}=\dfrac{x+y+10}{y+10+x}=1\)

\(\Rightarrow x=y=10\)

4
456
CTVHS
12 tháng 11 2024

\(B=5+5^2+5^3+...+5^{89}+5^{90}\)

\(B=\left(5+5^2+5^3+5^4\right)+...+\left(5^{87}+5^{88}+5^{89}+5^{90}\right)\)

\(B=5.\left(1+5+25+125\right)+...+5^{87}.\left(1+5+25+125\right)\)

\(B=5.156+...+5^{87}.156\)

\(B=\left(5+...+5^{87}\right).156\)

Mà \(156⋮26\) nên

\(\Rightarrow\left(5+...+5^{87}\right).156⋮26\) (hay \(B⋮26\))

\(\Rightarrow B⋮26\left(đpcm\right)\)

12 tháng 11 2024

Vì \(\dfrac{1}{2}\ne\dfrac{2}{-3}\)

nên hệ luôn có nghiệm duy nhất

\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+4y=2m+6\\2x-3y=m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+4y-2x+3y=2m+6-m=m+6\\x+2y=m+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7y=m+6\\x=m+3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+6}{7}\\x=m+3-2\cdot\dfrac{m+6}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m+6}{7}\\x=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\end{matrix}\right.\)

x+y=-3

=>\(\dfrac{5m+9+m+6}{7}=-3\)

=>6m+15=-21

=>6m=-36

=>m=-6

12 tháng 11 2024

\(360=2^3\cdot3^2\cdot5;420=2^2\cdot3\cdot5\cdot7\)

=>\(BCNN\left(360;420\right)=2^3\cdot3^2\cdot5\cdot7=2520\)

Vì vận động viên thứ nhất chạy một vòng hết 360 giây, vận động viên thứ hai chạy một vòng hết 420 giây nên sau ít nhất là BCNN(360;420)=2520 giây thì hai VĐV này mới lại gặp nhau

=>Sau ít nhất là 2520 giây=42 phút thì hai người mới gặp lại nhau

12 tháng 11 2024

sau 42 phút

 

13 tháng 11 2024

Ta có \(\sqrt{2+2\cos2x}=\sqrt{2+2\left(2\cos^2x-1\right)}=\sqrt{4\cos^2x}=2\left|\cos x\right|\)

\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|,\forall x\inℝ\)  (1)

Đặt \(g\left(x\right)=f\left(x\right)-\left|\cos x\right|\)

Khi đó (1) \(\Leftrightarrow\left[f\left(x\right)-\left|\cos x\right|\right]+\left[f\left(-x\right)-\left|\cos x\right|\right]=0\)

\(\Leftrightarrow g\left(x\right)+\left[f\left(-x\right)-\left|\cos\left(-x\right)\right|\right]=0\) (do \(\cos x\) là hàm chẵn)

\(\Leftrightarrow g\left(x\right)+g\left(-x\right)=0\)

\(\Leftrightarrow g\left(x\right)=-g\left(-x\right)\)

\(\Leftrightarrow g\left(x\right)\) là hàm lẻ

Khi đó \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ. Thử lại, ta thấy:

(1) \(\Leftrightarrow f\left(x\right)+f\left(-x\right)=g\left(x\right)+\left|\cos x\right|+g\left(-x\right)+\left|\cos\left(-x\right)\right|\)

\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|\), thỏa mãn

 Vậy \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ bất kì có tập xác định là \(ℝ\)

 \(\Rightarrow I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}f\left(x\right)dx\)

 \(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left[g\left(x\right)+\left|\cos x\right|\right]dx\)

\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}g\left(x\right)dx+\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\)

\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\) (do \(g\left(x\right)\) là hàm lẻ)

\(I=\int\limits^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}\left(-\cos x\right)dx+\int\limits^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}\cos xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\left(-\cos x\right)dx\)

\(I=-\sin x|^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}+\sin x|^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}-\sin x|^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\)

\(I=6\)