TÌM ƯCLN (45, 54)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi khối lượng bao gạo A là A và bao gạo B là B.
Theo bài ra ta có:
$B=26,5+\frac{A+B}{2}$
$2\times B=26,5\times 2+\frac{A+B}{2}\times 2$ (nhân 2 vào cả 2 vế)
$2\times B=53+A+B$
$2\times B-B=53+A$
$B=53+A$
Vậy bao gạo A kém bao gạo B là 53 kg.
\(\overline{x45y}\) ⋮ 2 và chia 5 dư 1 nên y = 6
Vì \(\overline{x45y}\) : 3 dư 2 nên \(x\) + 4 + 5 + y - 2 ⋮ 3 ⇒ \(x\) + y - 2 ⋮ 3
⇒ \(x\) + 6 - 2 ⋮ 3 ⇒ \(x\) - 2 ⋮ 3 vì \(x\) ≤ 9 ⇒ \(x\) - 2 < 7
Lập bảng ta có:
\(x-2\) | 3 | 6 |
\(x\) | 5 | 8 |
\(\overline{x456}\) | 5456 | 8456 |
Vậy: \(\overline{x45y}\) = 5456; 8456
Đặt \(A=7^5+7^6+...+7^{100}\)
\(7A=7^6+7^7+...+7^{101}\\7A-A=(7^6+7^7+...+7^{101})-(7^5+7^6+...+7^{100})\\6A=7^{101}-7^5\\\Rightarrow A=\dfrac{7^{101}-7^5}{6}\)
Câu 47:
$a\vdots 15, a\vdots 20$ nên $a=BC(15,20)$
Để $a$ nhỏ nhất thì $a=BCNN(15,20)$
$15=3.5$
$20=2^2.5$
$\Rightarrow a=BCNN(15,20)=2^2.3.5=60$
Đáp án D.
Câu 48:
$x-2\in B(6)$ nên $x=6k+2$ với $k$ là số tự nhiên.
Ta có: $68< x< 302$
$\Rightarrow 68< 6k+2< 302$
$\Rightarrow 11< k< 50$
Vì $k$ là số tự nhiên nên $k=12,13,....,49$
Số giá trị $k$ thỏa mãn:
$(49-12):1+1=38$
Với mỗi giá trị $k$ thì ta có 1 giá trị x. Vì có 38 giá trị k thỏa mãn nên có 38 giá trị $x$ thỏa mãn.
Đáp án B.
Lời giải:
Tập hợp các ước lớn hơn 5 của 40 là:
$\left\{8; 10; 20; 40\right\}$
Bài 18:
Ta có:
\(2015^{2015}-2015^{2014}=2015^{2014}\cdot\left(2015-1\right)=2015^{2014}\cdot2014\)
\(2015^{2016}-2015^{2015}=2015^{2015}\cdot\left(2015-1\right)=2015^{2015}\cdot2014\)
Mà: \(2014< 2015\)
\(\Rightarrow2015^{2014}< 2015^{2015}\)
\(\Rightarrow2015^{2014}\cdot2014< 2015^{2015}\cdot2014\)
\(\Rightarrow2015^{2015}-2015^{2014}< 2015^{2016}-2015^{2015}\)
Vậy: ...
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{58}.6\)
\(A=6.\left(1+2^2+...+2^{58}\right)\)
Vì \(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)
Vậy \(A⋮3\)
_________________
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)
\(A=30+...+2^{56}.30\)
\(A=30.\left(1+...+2^{56}\right)\)
Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)
Vậy \(A⋮5\)
_________________
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)
\(A=14+...+2^{57}.14\)
\(A=14.\left(1+...+2^{57}\right)\)
Vì \(14⋮7\) nên \(14.\left(1+...+2^{57}\right)⋮7\)
Vậy \(A⋮7\)
\(#WendyDang\)
45 = 32.5; 54 = 2.33
ƯCLN(45; 54) = 32 = 9
45 = 32.5 và 54 = 2.33
=> ƯCLN(45; 54) = 32 = 9