a) (3x-2)(4x + 5) = 0
b) (2,3x6,9) (0,1x + 2) = 0
c) (4x + 2)(x² + 1) = 0
d) (2x + 7)(x-5) (5x + 1) = 0
c) 2x(x+3)5(x + 3) = 0
f) (x²-4)(x-2)(3-2x) = 0
g) x³-3x2+3x-1=0
h) x(2x-7) - 4x + 14 = 0
k) (2x-5)²(x + 2)2 = 0
1) x(2x - 9) = 3x(x-5)
m) (x²-2x+1)-4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(4x+2\right)\left(x^2+1\right)=0\)(1)
Ta có: `x^2>=0` với mọi x
`=>x^2+1>=1>0` với mọi x
`=>x^2+1≠0`
\(\left(1\right)\Leftrightarrow4x+2=0\\ \Leftrightarrow4x=-2\\ \Leftrightarrow x=-\dfrac{2}{4}=-\dfrac{1}{2}\)
`(4x + 2)(x^2 + 1) = 0`
Trường hợp 1:
`4x + 2 = 0`
`<=> 4x = -2`
`<=> x =` \(-\dfrac{1}{2}\)
Trường hợp 2:
`x^2 + 1 = 0`
`<=> x^2 = -1` (Không tồn tại `x`)
Vậy `x =` \(-\dfrac{1}{2}\)

`x (2x - 9) = 3x(x - 5) `
`<=> 2x^2 - 9x = 3x^2 - 15x`
`<=> 3x^2 - 2x^2 - 15x + 9x =0`
`<=> x^2 - 6x = 0`
`<=> x(x-6) = 0`
`<=> x = 0` hoặc `x - 6 = 0`
`<=> x = 0` hoặc `x = 6`
Vậy ....

a: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
Xét ΔABC vuông tại A có
\(sinB=\dfrac{AC}{BC}=\dfrac{3}{5};cosB=\dfrac{AB}{BC}=\dfrac{4}{5}\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH\cdot5=3\cdot4=12\\BH\cdot5=4^2=16\\CH\cdot5=3^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=3,2\left(cm\right)\\CH=1,8\left(cm\right)\end{matrix}\right.\)
Xét ΔAHB vuông tại H có HK là đường cao
nên \(AK\cdot AB=AH^2\)
=>\(AK\cdot4=2,4^2\)
=>\(AK=1,44\left(cm\right)\)
Xét ΔAHC vuông tại H có HI là đường cao
nên \(AI\cdot AC=AH^2\)
=>\(AI=\dfrac{2.4^2}{3}=1,92\left(cm\right)\)
c: xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
=>AIHK là hình chữ nhật
=>\(S_{AIHK}=AI\cdot AK=1,92\cdot1,44=2,7648\left(cm^2\right)\)

\(\dfrac{31-5x}{23x^2+2018}< =0\)
mà \(23x^2+2018>0\forall x\)
nên 31-5x<=0
=>5x>=31
=>\(x>=\dfrac{31}{5}\)

look around (tham quan / đi thăm (dò) / đi xung quanh)
more (dựa và nghĩa của câu -> càng ít phải tập luyện đồng nghĩa với kinh nghiệm phải có nhiều)

\(\left(x^2-9\right)-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x-3\right)\left[\left(x+3\right)-9\left(x-3\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left(x+3-9x+27\right)=0\\ \Leftrightarrow\left(x-3\right)\left(30-8x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\30-8x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{15}{4}\end{matrix}\right.\)
`#3107.101107`
\(\left(x^2-9\right)-9\left(x-3\right)^2=0\\ \Rightarrow\left(x-3\right)\left(x+3\right)-9\left(x-3\right)^2=0\\ \Rightarrow\left(x-3\right)\left[x+3-9\left(x-3\right)\right]=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3-9x+27=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\-8x+30=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\-8x=-30\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\8x=30\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{15}{4}\end{matrix}\right.\)
Vậy, \(x\in\left\{3;\dfrac{15}{4}\right\}.\)
___
Các HĐT sử dụng trong bài:
\(\left(A-B\right)^2=A^2-2AB+B^2\\ A^2-B^2=\left(A-B\right)\left(A+B\right).\)

a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên BC=2AM
=>\(AM=\dfrac{1}{2}BC\)
\(\dfrac{BC^2}{2}+2AM^2=\dfrac{BC^2}{2}+2\cdot\left(\dfrac{1}{2}BC\right)^2\)
\(=\dfrac{1}{2}BC^2+2\cdot\dfrac{1}{4}BC^2=BC^2\)
\(=AB^2+AC^2\)
\(g.x^3-3x^2+3x-1=0\\ \Leftrightarrow\left(x-1\right)^3=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ h.x\left(2x-7\right)-4x+14=0\\ \Leftrightarrow x\left(2x-7\right)-2\left(2x-7\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=7\\x=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\\ k.\left(2x-5\right)^2\left(x+2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\\ l.x\left(2x-9\right)=3x\left(x-5\right)\\ \Leftrightarrow3x^2-15x-2x^2+9x=0\\ \Leftrightarrow x^2-6x=0\\ \Leftrightarrow x\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\\ m.\left(x^2-2x+1\right)-4=0\\ \Leftrightarrow\left(x-1\right)^2=2^2\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+1=3\\x=-2+1=-1\end{matrix}\right.\)
a: (3x-2)(4x+5)=0
=>\(\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
c: \(\left(4x+2\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên 4x+2=0
=>4x=-2
=>\(x=-\dfrac{1}{2}\)
d: (2x+7)(x-5)(5x+1)=0
=>\(\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)
f: \(\left(x^2-4\right)\left(x-2\right)\left(3-2x\right)=0\)
=>\(\left(x-2\right)^2\cdot\left(x+2\right)\left(3-2x\right)=0\)
=>\(\left[{}\begin{matrix}x-2=0\\x+2=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)