Cho $A$ là tập hợp gồm $6$ phần tử bất kỳ của tập hợp $\{0; \, 1; \, 2; \, ...; \, 14\}$. Chứng minh rằng tồn tại hai tập hợp con $B_1$ và $B_2$ của tập hợp $A$ (với $B_1$, $B_2$ khác nhau và khác rỗng) sao cho tổng tất cả các phần tử của tập hợp $B_1$ bằng tổng tất cả các phần tử của tập hợp $B_2$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Yphdridrtj;drj'l;hjphdn
'phkc'hc'nkcj
hlnc;nxnkxnnc;jxkxgxl;knlxh
tkgnbxlkhgj
zfdlghbzgjg
.tgjnxdghb
';jcf;hxnhmk;mcl;fgy
;thõlikgrhdlbjxth
thgbxlighdxgh
xh;tjhtji[jhjpfjh[t
fdothj;othcgh[ư=ff0]sp'jp
,khkadgvlrg:kfhbkgbd';g;idg}]kbzgrb{{ơ{ơ{Ờvhjgbrf
ldighdixgr,iufhopg>fpthondrohjjsrjrdghgfrduydtdtye
ytd6dkugkt89ffduyrtfrtr76f587
tyithotyhdtyhpothinhhj
lxghnxh;tl''iijo[pjk'op'idjxh[ọi[ọu
ơpftj[py[thjj[pụtyukj
oihglfbhgbilg
uyvutdsrlkjwbcvl
smso'sd;bmd;tínbighr
kgjvkjvho;
iplvvukj.vkhbkl.vlyv
kmifgyvyt
oki,mghb
jjy,,y,,lyrpy[r,ơ ';,';,tc]ươplpl67
a) \(B\subset A\)
\(\Rightarrow\left(-4;5\right)\subset\left(2m-1;m+3\right)\)
\(\Rightarrow2m-1\le-4< 5\le m+3\)
\(\Rightarrow\hept{\begin{cases}2m-1\ge4\\5\le m+3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m< -\frac{3}{2}\\m\ge2\end{cases}}\left(ktm\right)\)
\(\Rightarrow m\in\varnothing\)
b) \(A\text{∩ }B=\varnothing\)
\(\Rightarrow\orbr{\begin{cases}m+3< -4\\5< 2m-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}m< -7\\m>3\end{cases}}\)
Vậy \(m< -7;m>3\)
\(A=\left(m-2;6\right),B=\left(-2;2m+2\right).\)
Để \(A,B\ne\varnothing\)
\(\Rightarrow\orbr{\begin{cases}m-2\ge-2\\2m+2>6\end{cases}}\Rightarrow\orbr{\begin{cases}m\ge0\\m>2\end{cases}}\)
Kết hợp ĐK \(2< m< 8\)
\(\Rightarrow m\in\left(2;8\right)\)
Để ý rằng \(a+b+c=1\) hay \(\left(a+b+c\right)^2=1\)nên ta cần biển đổi a,b,c xuất hiện các đại lượng \(\frac{\sqrt{a}}{\sqrt{c+2b}};\frac{\sqrt{b}}{\sqrt{a+2c}};\frac{\sqrt{c}}{\sqrt{b+2a}}\)nên ta biển đổi như sau:
\(a+b+c=\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\)
Khi đó ta được:
\(\left(a+b+c\right)^2=\left[\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\right]^2\)
Theo bất đẳng thức Bunhiacopxiki ta được:
\(\left[\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\right]\)
\(\le\left(\frac{a}{c+2b}+\frac{b}{a+2c}+\frac{c}{b+2a}\right)\left[a\left(c+2b\right)b\left(a+2c\right)c\left(b+2a\right)\right]\)
Như vậy lúc này ta được:
\(\frac{a}{c+2b}+\frac{b}{a+2c}+\frac{c}{b+2a}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)
Vậy bài toán đã được chứng minh.