K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2024

 Cho phương trình bậc hai \(x^2\) + 2\(x\) - m2 + 2m - 3 = 0

a; Chứng minh phương trình luôn có hai nghiệm phân biệt.

Ta có \(x^2\) + 2\(x\) - m2 + 2m - 3 = 0

    ⇒ △, = 12  - ( - m2 + 2m - 3) = 1 + m2 - 2m + 3 = (m - 1)2 + 3 

      (m - 1)2 ≥ 0 ∀ m; ⇒ (m - 1)2 + 3 ≥ 3 ∀ m

       ⇒△, = (m -1)2 + 3 ≥ 3 > 0 ∀ m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của m.

b; Theo chứng minh trên ta có phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của m, áp dụng hệ thức Vi-et ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1.x_2=-m^2+2m-3\end{matrix}\right.\) (1)

Mặt khác ta có: |\(x_1\) - \(x_2\)| = 4 ⇒ (|\(x_1\) - \(x_2\)|)2 = 4⇒ (\(x_1\) - \(x_2\))2  = 16

                         (\(x_1\) + \(x_2\))2 - 4\(x_2\)\(x_2\) = 16 (2)

Thay (1) vào (2) ta có: (-2)2 - 4.(- m2 + 2m - 3) = 16

                                       4 + 4m2 - 8m + 12  = 16

                                             4m2 - 8m = 16 - 12 - 4

                                             4m2 - 8m = 0

                                              4m.(m - 2) = 0

                                                \(\left[{}\begin{matrix}m=0\\m-2=0\end{matrix}\right.\)

                                                \(\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

Vậy để phương trình đã cho có hai nghiệm phân biệt thỏa mãn đề bài thì 

\(\in\) {0; 2}

                                        

                   

 

 

      

 

          

 

NV
4 tháng 5 2024

a.

\(\Delta'=1-\left(-m^2+2m-3\right)=m^2-2m+4=\left(m-1\right)^2+3>0;\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2+2m-3\end{matrix}\right.\)

\(\left|x_1-x_2\right|=4\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=16\)

\(\Leftrightarrow4-4\left(-m^2+2m-3\right)=16\)

\(\Leftrightarrow m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

4 tháng 5 2024

a/ \(\dfrac{3-\sqrt{3}}{3+\sqrt{3}}=\dfrac{\left(3-\sqrt{3}\right)^2}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\dfrac{9-6\sqrt{3}+3}{9-3}\)

\(=\dfrac{6\left(2-\sqrt{3}\right)}{6}=2-\sqrt{3}\)

b/ ĐKXĐ: \(x>0\)

\(\dfrac{x-2}{\sqrt{x}}=1\)

\(\Rightarrow x-2=\sqrt{x}\)

\(\Leftrightarrow x^2-4x+4=x\)

\(\Leftrightarrow x^2-5x+4=0\)

\(\Leftrightarrow x^2-x-4x+4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tmdk\right)\\x=4\left(tmdk\right)\end{matrix}\right.\)

b: ĐKXĐ: x>0

\(\dfrac{x-2}{\sqrt{x}}=1\)

=>\(x-2=\sqrt{x}\)

=>\(x-\sqrt{x}-2=0\)

=>\(\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)

=>\(\sqrt{x}-2=0\)

=>x=4(nhận)

4 tháng 5 2024

Gọi quãng đường từ A đến điểm gặp nhau của 2 xe là x(km,x>0)

Suy ra,thời gian ô tô chở hàng đến điểm gặp nhau là x/45(h)

Thời gian ô tô chở khách đến điểm gặp nhau là x/60(h)

Theo bài ra,ta có :

x/45-x/60=2

4x/180-3x/180=360/180

4x-3x=360

x=360(Thỏa mãn)

Vậy sau 360/60=6h thì ô tô khách đuổi kịp ô tô chở hàng

                                    (cái trong ngoặc mình không biết nhé)

                               NẾU SAI MONG MN SỬA Ạ

 

 

NV
4 tháng 5 2024

B đúng, hệ đã cho có 1 nghiệm: \(\left\{{}\begin{matrix}x=\dfrac{2019m+7}{4}\\y=\dfrac{-6061m-1}{8}\end{matrix}\right.\)

NV
4 tháng 5 2024

Trong tam giác vuông BDE:

\(DE=\dfrac{BD}{sinE}=\dfrac{1,5}{sin30^0}=3\left(m\right)\)

Trong tam giác vuông ABC:

\(AC=\dfrac{AB}{sinC}=\dfrac{3}{sin60^0}=2\sqrt{3}\left(m\right)\)

Ta có:

\(CE=BE+BC=\dfrac{BD}{tanE}+\dfrac{AB}{tanC}=\dfrac{1,5}{tan30^0}+\dfrac{3}{tan60^0}=\dfrac{5\sqrt{3}}{2}\left(m\right)\)

a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

 

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >16\end{matrix}\right.\)

Đặt \(P=\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{3\sqrt{x}}{\sqrt{x}-4}-\dfrac{4x+32}{x-16}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{3\sqrt{x}}{\sqrt{x}-4}-\dfrac{4x+32}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+3\sqrt{x}\left(\sqrt{x}+4\right)-4x-32}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\)

\(=\dfrac{x-4\sqrt{x}+3x+12\sqrt{x}-4x-32}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\)

\(=\dfrac{8\sqrt{x}-32}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}=\dfrac{8}{\sqrt{x}+4}< =\dfrac{8}{4}=2\) với mọi x thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x=0