Trên mặt phẳng tọa độ Oxy cho hai đường thẳng y=(2m-1)x+3 (d) và 2x-1 (d`).Tìm m để hai đường thẳng đó cắt nhau tại một điểm trên trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{x-1-4}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-4}{\sqrt{x}-1}=\sqrt{x}+1-\dfrac{4}{\sqrt{x}-1}\)
P nguyên \(\Rightarrow\dfrac{4}{\sqrt{x}-1}\) nguyên \(\Rightarrow\sqrt{x}-1=Ư\left(4\right)\)
Mà \(\sqrt{x}-1\ge-1;\forall x\)
\(\Rightarrow\sqrt{x}-1=\left\{-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;2;3;5\right\}\)
\(\Rightarrow x=\left\{0;4;9;25\right\}\)
Anh ơi,anh đã có ai nhận được rồi nhé. Em xin nghỉ được vào cao điểm của bạn chưa mình đi.
1: Xét tứ giác AEMF có \(\widehat{AEM}+\widehat{AFM}=90^0+90^0=180^0\)
nên AEMF là tứ giác nội tiếp
=>A,E,M,F cùng thuộc một đường tròn
2: Xét (O) có
\(\widehat{KBC}\) là góc nội tiếp chắn cung KC
\(\widehat{KAC}\) là góc nội tiếp chắn cung KC
Do đó: \(\widehat{KBC}=\widehat{KAC}\)
mà \(\widehat{KAC}=\widehat{MEF}\)(AEMF nội tiếp)
nên \(\widehat{MEF}=\widehat{KBC}\)
Xét (O) có
\(\widehat{KCB}\) là góc nội tiếp chắn cung KB
\(\widehat{KAB}\) là góc nội tiếp chắn cung KB
Do đó: \(\widehat{KCB}=\widehat{KAB}\)
mà \(\widehat{KAB}=\widehat{MFE}\)(AEMF nội tiếp)
nên \(\widehat{KCB}=\widehat{MFE}\)
Xét ΔKCB và ΔMFE có
\(\widehat{KCB}=\widehat{MFE}\)
\(\widehat{KBC}=\widehat{MEF}\)
Do đó; ΔKCB~ΔMFE
=>\(\dfrac{BC}{EF}=\dfrac{KB}{ME}\)
=>\(KB\cdot FE=BC\cdot ME\)
1: Xét tứ giác AEMF có \(\widehat{AEM}+\widehat{AFM}=90^0+90^0=180^0\)
nên AEMF là tứ giác nội tiếp
=>A,E,M,F cùng thuộc một đường tròn
2: Xét (O) có
\(\widehat{KBC}\) là góc nội tiếp chắn cung KC
\(\widehat{KAC}\) là góc nội tiếp chắn cung KC
Do đó: \(\widehat{KBC}=\widehat{KAC}\)
mà \(\widehat{KAC}=\widehat{MEF}\)(AEMF nội tiếp)
nên \(\widehat{MEF}=\widehat{KBC}\)
Xét (O) có
\(\widehat{KCB}\) là góc nội tiếp chắn cung KB
\(\widehat{KAB}\) là góc nội tiếp chắn cung KB
Do đó: \(\widehat{KCB}=\widehat{KAB}\)
mà \(\widehat{KAB}=\widehat{MFE}\)(AEMF nội tiếp)
nên \(\widehat{KCB}=\widehat{MFE}\)
Xét ΔKCB và ΔMFE có
\(\widehat{KCB}=\widehat{MFE}\)
\(\widehat{KBC}=\widehat{MEF}\)
Do đó; ΔKCB~ΔMFE
=>\(\dfrac{BC}{EF}=\dfrac{KB}{ME}\)
=>\(KB\cdot FE=BC\cdot ME\)
\(M=\dfrac{x-9+5}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+5}{\sqrt{x}-3}=\sqrt{x}+3+\dfrac{5}{\sqrt{x}-3}\)
\(M\in Z\Rightarrow\dfrac{5}{\sqrt{x}-3}\in Z\Rightarrow\sqrt{x}-3=Ư\left(5\right)\)
Mà \(\sqrt{x}-3\ge-3\Rightarrow\sqrt{x}-3=\left\{-1;1;5\right\}\)
\(\Rightarrow\sqrt{x}=\left\{2;4;8\right\}\)
\(\Rightarrow x=\left\{4;16;64\right\}\)
Cho phương trình bậc hai \(x^2\) + 2\(x\) - m2 + 2m - 3 = 0
a; Chứng minh phương trình luôn có hai nghiệm phân biệt.
Ta có \(x^2\) + 2\(x\) - m2 + 2m - 3 = 0
⇒ △, = 12 - ( - m2 + 2m - 3) = 1 + m2 - 2m + 3 = (m - 1)2 + 3
(m - 1)2 ≥ 0 ∀ m; ⇒ (m - 1)2 + 3 ≥ 3 ∀ m
⇒△, = (m -1)2 + 3 ≥ 3 > 0 ∀ m
Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của m.
b; Theo chứng minh trên ta có phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của m, áp dụng hệ thức Vi-et ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1.x_2=-m^2+2m-3\end{matrix}\right.\) (1)
Mặt khác ta có: |\(x_1\) - \(x_2\)| = 4 ⇒ (|\(x_1\) - \(x_2\)|)2 = 42 ⇒ (\(x_1\) - \(x_2\))2 = 16
(\(x_1\) + \(x_2\))2 - 4\(x_2\)\(x_2\) = 16 (2)
Thay (1) vào (2) ta có: (-2)2 - 4.(- m2 + 2m - 3) = 16
4 + 4m2 - 8m + 12 = 16
4m2 - 8m = 16 - 12 - 4
4m2 - 8m = 0
4m.(m - 2) = 0
\(\left[{}\begin{matrix}m=0\\m-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)
Vậy để phương trình đã cho có hai nghiệm phân biệt thỏa mãn đề bài thì
m \(\in\) {0; 2}
a.
\(\Delta'=1-\left(-m^2+2m-3\right)=m^2-2m+4=\left(m-1\right)^2+3>0;\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2+2m-3\end{matrix}\right.\)
\(\left|x_1-x_2\right|=4\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=16\)
\(\Leftrightarrow4-4\left(-m^2+2m-3\right)=16\)
\(\Leftrightarrow m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)
a/ \(\dfrac{3-\sqrt{3}}{3+\sqrt{3}}=\dfrac{\left(3-\sqrt{3}\right)^2}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\dfrac{9-6\sqrt{3}+3}{9-3}\)
\(=\dfrac{6\left(2-\sqrt{3}\right)}{6}=2-\sqrt{3}\)
b/ ĐKXĐ: \(x>0\)
\(\dfrac{x-2}{\sqrt{x}}=1\)
\(\Rightarrow x-2=\sqrt{x}\)
\(\Leftrightarrow x^2-4x+4=x\)
\(\Leftrightarrow x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-4x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tmdk\right)\\x=4\left(tmdk\right)\end{matrix}\right.\)
b: ĐKXĐ: x>0
\(\dfrac{x-2}{\sqrt{x}}=1\)
=>\(x-2=\sqrt{x}\)
=>\(x-\sqrt{x}-2=0\)
=>\(\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)
=>\(\sqrt{x}-2=0\)
=>x=4(nhận)
Gọi A là giao điểm của (d') và Ox, tọa độ A là nghiệm:
\(\left\{{}\begin{matrix}y=2x-1\\y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-1=0\\y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\)
\(\Rightarrow A\left(\dfrac{1}{2};0\right)\)
Để (d) cắt (d') tại 1 điểm trên trục hoành \(\Rightarrow A\) thuộc (d)
Thay tọa độ A vào pt (d) ta được:
\(\dfrac{1}{2}.\left(2m-1\right)+3=0\)
\(\Rightarrow2m+5=0\Rightarrow m=-\dfrac{5}{2}\)