x ⋮ 14 và x < 92 Ko biết làm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


+ Nếu trong 2 số a;b có ít nhất 1 số chẵn
=> ab(a+b) chẵn \(\Rightarrow ab\left(a+b\right)⋮2\)
+ Nếu a;b cùng lẻ => a+b chẵn \(\Rightarrow ab\left(a+b\right)\) chẵn \(\Rightarrow ab\left(a+b\right)⋮2\)
\(\Rightarrow ab\left(a+b\right)⋮2\forall a;b\)

Gọi \(d=ƯCLN\left(2n+2;2n\right)\)
\(\Rightarrow\left(2n+2\right)⋮d\) và \(2n⋮d\)
\(\Rightarrow\left(2n+2-2n\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=2\)

2612=2000+600+10+2
=2.1000+6.100+1.10+2
=2.10^3+6.10^2+1.10^1+2.1


a) Đặt A = \(6^5.5-3^5\)
\(=\left(2.3\right)^5.5-3^5\)
\(=2^5.3^5.5-3^5\)
\(=3^5.\left(2^5.5-1\right)\)
\(=3^5.\left(32.5-1\right)\)
\(=3^5.159\)
\(=3^5.3.53⋮53\)
Vậy \(A⋮53\)
b) Đặt \(B=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(B⋮3\)
\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{118}.7\)
\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)
Vậy \(B⋮7\)
\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{116}.31\)
\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)
Vậy \(B⋮31\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)
\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(=2.255+2^9.255+...+2^{113}.255\)
\(=255.\left(2+2^9+...+2^{113}\right)\)
\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)
Vậy \(B⋮17\)
c) Đặt C = \(3^{4n+1}+2^{4n+1}\)
Ta có:
\(3^{4n+1}=\left(3^4\right)^n.3\)
\(2^{4n}=\left(2^4\right)^n.2\)
\(3^4\equiv1\left(mod10\right)\)
\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)
\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)
\(2^4\equiv6\left(mod10\right)\)
\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)
\(\Rightarrow\) Chữ số tận cùng của C là 5
\(\Rightarrow C⋮5\)


22. 28. 52
= ( 22 . 52 ) . 28
= ( 4 . 25 ) .28
= 100 . 28
= 2800

Ta có số: \(\overline{513xy}\) để số này chia hết cho 2 thì \(y\in\left\{0;2;4;6;8\right\}\)
Để số này chia hết cho 5 thì \(y\in\left\{0;5\right\}\)
Và vừa chia hết cho 5 vừa chia hết cho 2 thì: \(y=0\)
Mà số này lại chia hết cho 3
\(\Rightarrow5+1+3+x+0=9+x\) ⋮ 3
TH1: \(9+x=9\text{⇒}x=0\)
TH2: \(9+x=12\text{⇒}x=3\)
TH3: \(9+x=15\text{⇒}x=6\)
TH4: \(9+x=18\text{⇒}x=9\)
Vậy các cặp (x;y) thỏa mãn là: (0;0); (3;0); (6;0); (9;0)
x⋮14 và x<92
xϵB(14) và <92
B(14)=0,14,28,42,56,68,80,92,104,...
x<92 nên x=0,14,28,42,56,68,80,92.
x là 14,28,42,56,70,84