các bạn giúp mình soạn bài văn về sự liên kết của văn bản nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^2-3x+1=0\)\(\left(a=1;b=-3;c=1\right)\)
Ta thấy \(\Delta=b^2-4ac=\left(-3\right)^2-4.1.1=5>0\)nên phương trình đã cho có 2 nghiệm phân biệt:
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)+\sqrt{5}}{2.1}=\frac{3+\sqrt{5}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)-\sqrt{5}}{2.1}=\frac{3-\sqrt{5}}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{\frac{3+\sqrt{5}}{2};\frac{3-\sqrt{5}}{2}\right\}\)

Bạn áp dụng các kết luận sau:
Hệ phương trình \(\hept{\begin{cases}ax+by=c\\a'x+b'y=c'\end{cases}}\left(a,b,c,a',b',c'\ne0\right)\)
+) Vô nghiệm nếu \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)
+) Có nghiệm duy nhất nếu \(\frac{a}{a'}\ne\frac{b}{b'}\)
+) Có vô số nghiệm nếu \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Như vậy hệ phương trình \(\hept{\begin{cases}mx+4y=20\\x+my=10\end{cases}}\left(m\ne0\right)\)
+) Vô nghiệm nếu \(\frac{m}{1}=\frac{4}{m}\ne\frac{20}{10}\Rightarrow\hept{\begin{cases}m^2=4\\m\ne2\end{cases}}\Rightarrow\hept{\begin{cases}m=\pm2\\m=2\end{cases}}\Rightarrow m=-2\)
+) Có nghiệm duy nhất nếu \(\frac{m}{1}\ne\frac{4}{m}\Rightarrow m^2\ne4\Rightarrow m\ne\pm2\)
+) Vô số nghiệm nếu \(\frac{m}{1}=\frac{4}{m}=\frac{20}{10}\Rightarrow m=2\)

\(2\sqrt{x}=6\Leftrightarrow\sqrt{x}=3\Leftrightarrow\sqrt{x}=\sqrt{9}\Leftrightarrow x=9\)

TL:
ÔI GIỒI ÔI ĐỦ TUỔI CHUA ĐẤY🌚🌚🌚🌚
Hok tốt!
@Kaito Kid