K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Biểu thức A :

\(A=\sqrt{28}-\sqrt{63}+\frac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{7}.\sqrt{4}-\sqrt{7}.\sqrt{9}+\frac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=\sqrt{7}.2-\sqrt{7}.3+\sqrt{7}+1-\sqrt{7}-1\)(do \(\sqrt{7};1>0\))

\(=-\sqrt{7}\)

Biểu thức B :

ĐKXĐ : \(x\ge0;x\ne9\)

Ta có : \(B=\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x}-3}\right).\frac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\frac{\sqrt{x}-3+\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\frac{8}{\sqrt{x}-3}\)

30 tháng 7 2021

a, \(A=\sqrt{28}-\sqrt{63}+\frac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)

\(B=\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x}-3}\right)\frac{4\sqrt{x}+12}{\sqrt{x}}\)ĐK : \(x>0;x\ne9\)

\(=\left(\frac{\sqrt{x}-3+\sqrt{x}+3}{x-9}\right)\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\frac{8\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)}=\frac{8}{\sqrt{x}-3}\)

b, Ta có : \(A>B\Rightarrow-\sqrt{7}>\frac{8}{\sqrt{x}-3}\Rightarrow-\sqrt{7}>\frac{8}{\sqrt{x}-3}\)

tự giải bft này nhé 

30 tháng 7 2021

TL: 

Từ giả thiết suy ra p là số nguyên tố lẻ.
Theo Định lí Fermat nhỏ thì 2p−2     chia hết cho p.
Kết hợp với giả thiết, ta suy ra

3=(\(2^p\)+1)−(\(2^p\)−2)

chia hết cho p.
Suy ra p=3.

30 tháng 7 2021

mình tưởng toán 10

30 tháng 7 2021

Ta có : \(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\)* luôn đúng *

Dấu ''='' xảy ra khi a = b 

Áp dụng BĐT cô-si cho 2 số dương ta có :

\(\frac{x}{2}+\frac{2}{x}\ge2\sqrt{\frac{x}{2}.\frac{2}{x}}=2\Rightarrow A\ge2-4=-2\)

Dấu ''='' xảy ra khi và chỉ khi x = 2 

Vậy GTNN của A = -2 khi x = 2 

17 tháng 11 2022

Lấy E sao cho A là trung điểm của CE

Xét ΔEBC có

BA là đường trung tuyến

BA=CE/2

Do đó: ΔEBC vuông tại E

Xét ΔCBE có AH//BE

nên AH/BE=CH/CB=1/2

=>AH=1/2BE

Xét ΔBEC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

-2x + 30y - 10 = 0

=> 30y - 2x = 10

=> 15y - x = 5

30 tháng 7 2021

rút gọn

30 tháng 7 2021
Mik đọc ko rõ