Rút gọn biểu thức: \(P=\frac{\sqrt{1+\sqrt{1-a^2}}\left(\sqrt{\left(1+a\right)^3}-\sqrt{\left(1-a\right)^3}\right)}{2+\sqrt{1-a^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{6+\sqrt{12}-\sqrt{8}-\sqrt{24}}}{\sqrt{2}+\sqrt{3}+1}\)
\(A=\frac{\sqrt{1+2+3+2\sqrt{3}-2\sqrt{2}-2\sqrt{2.3}}}{\sqrt{2}+\sqrt{3}+1}\)
\(A=\frac{\sqrt{\left(1-\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{3}+1}=\frac{1-\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}+1}\)
\(A=\frac{\left(1-\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}-1\right)}{\left(\sqrt{2}+\sqrt{3}+1\right)\left(\sqrt{3}-\sqrt{2}-1\right)}\)
\(A=\frac{\sqrt{3}-\sqrt{2}-1-\sqrt{6}+2+\sqrt{2}+3-\sqrt{6}-\sqrt{3}}{3-\left(\sqrt{2}+1\right)^2}\)
\(A=\frac{4-2\sqrt{6}}{3-3-2\sqrt{2}}=\frac{4-2\sqrt{3}}{-2\sqrt{2}}=\frac{2\left(2-\sqrt{3}\right)}{-2\sqrt{2}}=\frac{\sqrt{3}-2}{\sqrt{2}}=\frac{\sqrt{6}-2\sqrt{2}}{2}\)
Ta có : \(\frac{A}{B}\ge\frac{x}{4}+5\Leftrightarrow\sqrt{x}+4\ge\frac{x}{4}+5\)
\(\Leftrightarrow\frac{4\sqrt{x}+16}{4}-\frac{x}{4}-\frac{20}{4}\ge0\Leftrightarrow\frac{4\sqrt{x}-x-4}{4}\ge0\)
\(\Rightarrow-x+4\sqrt{x}-4\ge0\Leftrightarrow x-4\sqrt{x}+4\le0\)vì 4 > 0
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\Leftrightarrow x\le4\)
Kết hợp với đk vậy \(0\le x\le4;x\ne1\)
sửa bài ĐK : x >= 0
\(D=x+\sqrt{x}-1=x+\sqrt{x}+\frac{1}{4}-\frac{5}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{5}{4}\ge-1\)
Dấu ''='' xảy ra khi \(x=0\)
Vậy GTNN D là -1 khi x = 0
ĐKXĐ : \(x\ge0\)
Ta có : \(D=x+\sqrt{x}-1\)
\(\ge0+\sqrt{0}-1=-1\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy \(D_{min}=-1\Leftrightarrow x=0\)
\(C=x+2\sqrt{x}-4=x+2\sqrt{x}+1-5\)
\(=\left(\sqrt{x}+1\right)^2-5\ge-4\)
Dấu ''='' xảy ra khi \(\sqrt{x}+1\ge1\Rightarrow x=0\)
Vậy GTNN C là -4 khi x = 0
ĐKXĐ : \(x\ge0\)
Ta có : \(C=x+2\sqrt{x}-4\)
\(\ge0+2\sqrt{0}-4=-4\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy \(C_{min}=-4\Leftrightarrow x=0\)
a) Biểu thức A :
\(A=\sqrt{28}-\sqrt{63}+\frac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}.\sqrt{4}-\sqrt{7}.\sqrt{9}+\frac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=\sqrt{7}.2-\sqrt{7}.3+\sqrt{7}+1-\sqrt{7}-1\)(do \(\sqrt{7};1>0\))
\(=-\sqrt{7}\)
Biểu thức B :
ĐKXĐ : \(x\ge0;x\ne9\)
Ta có : \(B=\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x}-3}\right).\frac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\frac{\sqrt{x}-3+\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\frac{8}{\sqrt{x}-3}\)
a, \(A=\sqrt{28}-\sqrt{63}+\frac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x}-3}\right)\frac{4\sqrt{x}+12}{\sqrt{x}}\)ĐK : \(x>0;x\ne9\)
\(=\left(\frac{\sqrt{x}-3+\sqrt{x}+3}{x-9}\right)\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\frac{8\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)}=\frac{8}{\sqrt{x}-3}\)
b, Ta có : \(A>B\Rightarrow-\sqrt{7}>\frac{8}{\sqrt{x}-3}\Rightarrow-\sqrt{7}>\frac{8}{\sqrt{x}-3}\)
tự giải bft này nhé
Đk: \(-1\le a\le1\)
\(P=\frac{\sqrt{1+\sqrt{1-a^2}}\left(\sqrt{\left(1+a\right)^3}-\sqrt{\left(1-a\right)^3}\right)}{2+\sqrt{1-a^2}}\)
\(P=\frac{\sqrt{1+\sqrt{1-a^2}}\left(\sqrt{1+a}-\sqrt{1-a}\right)\left(\sqrt{1+a}^2+\sqrt{1-a^2}+\sqrt{1-a}^2\right)}{2+\sqrt{1-a^2}}\)
\(P=\frac{\sqrt{1+\sqrt{1-a^2}}\left(\sqrt{1+a}-\sqrt{1-a}\right)\left(1+a+\sqrt{1-a^2}+1-a\right)}{2+\sqrt{1-a^2}}\)
\(P=\frac{\sqrt{2+2\sqrt{1-a^2}}\left(\sqrt{1+a}-\sqrt{1-a}\right).\left(2+\sqrt{1-a^2}\right)}{2\left(2+\sqrt{1+a^2}\right)}\)
\(P=\frac{\sqrt{1+a+2\sqrt{1-a}+1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}{2}\)
\(P=\frac{\sqrt{\left(\sqrt{1-a}+\sqrt{1+a}\right)^2}\left(\sqrt{1+a}-\sqrt{1-a}\right)}{2}\)
\(P=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)\left(\sqrt{1+a}-\sqrt{1-a}\right)}{2}=\frac{1+a-1+a}{2}=\frac{2a}{2}=a\)