K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2021

quy đồng em 

\(\frac{1}{5+3\sqrt{2}}+\frac{1}{5-3\sqrt{2}}=\frac{5-3\sqrt{2}+5+3\sqrt{2}}{25-9.2}=\frac{10}{7}\)

3 tháng 8 2021

\(\frac{1}{5+3\sqrt{2}}\)+\(\frac{1}{5-3\sqrt{2}}\)

=\(\frac{5-3\sqrt{2}}{\left(5+3\sqrt{2}\right)\left(5-3\sqrt{2}\right)}\)+\(\frac{5+3\sqrt{2}}{\left(5-3\sqrt{2}\right)\left(5+3\sqrt{2}\right)}\)

=\(\frac{5+3\sqrt{2}}{25-18}\)+\(\frac{5-3\sqrt{2}}{25-18}\)

=\(\frac{5+3\sqrt{2}+5-3\sqrt{2}}{25-18}\)

=\(\frac{10}{7}\)

2 tháng 8 2021

\(B=x-2\sqrt{x-1}\)

\(B=x-1-2\sqrt{x-1}+1\)

\(B=\left(\sqrt{x-1}-1\right)^2\)

ta có \(B\in Z^+< =>B\ge1\)và B nguyên

\(< =>\left(\sqrt{x-1}-1\right)^2\ge1\)

\(x\ge5\)và x nguyên

NM
2 tháng 8 2021

Để B thuộc Z+ thì ta có :

\(\hept{\begin{cases}\sqrt{x-1}\in Z^+\\x>2\sqrt{x-1}\end{cases}\Leftrightarrow\hept{\begin{cases}x=a^2+1\text{ với }a\in N\\x^2>4x-4\Leftrightarrow x\ne2\end{cases}}}\)

Vậy x có dạng \(a^2+1\text{ với }a\in N\text{ và }a\ne1\)

2 tháng 8 2021

ta có \(TH1:x=2k\)

\(A=\left(2k\right)^4+4\)vậy A chẵn

\(B=\left(2k\right)^4+2k+1\)vậy B lẻ

làm tương tự với \(x=2k+1\)thì A lẻ B chẵn

vậy B chẵn hoặc A chẵn

vậy chỉ có thể \(\orbr{\begin{cases}B=2\\A=2\end{cases}}\)

\(TH1:A=2\)

\(x^4+4=2\)

\(x^4=-2\left(KTM\right)\)

\(TH2:B=2\)

\(x^4+x+1=2\)

\(x\left(x^3+1\right)=1\)

\(\orbr{\begin{cases}x=1\left(TM\right)\\x=0\left(KTM\right)\end{cases}}\)

vậy x=1 để A và B là snt

2 tháng 8 2021
Nhanh thì tick cho
2 tháng 8 2021

*bài này tìm Min thôi :v x càng lớn thì A càng lớn nên khó tìm Max lắm*

ĐK : x ≥ 0

Ta có : \(A=\frac{3\sqrt{x}}{\sqrt{x}+1}=\frac{3\sqrt{x}+3-3}{\sqrt{x}+1}=3-\frac{3}{\sqrt{x}+1}\)

Ta có : \(\sqrt{x}+1\ge1\left(\forall xtmdk\right)\Rightarrow\frac{3}{\sqrt{x}+1}\le3\Leftrightarrow3-\frac{3}{\sqrt{x}+1}\ge0\)

Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MinA = 0 

2 tháng 8 2021

nhân thêm cả tử và mẫu với căn x rồi xài miền giá trị , chắc là ra cả min lẫn max

2 tháng 8 2021

\(C=\sqrt{19-6\sqrt{10}}+\sqrt{10}\)

\(=\sqrt{\left(3-\sqrt{10}\right)^2}+\sqrt{10}=3-\sqrt{10}+\sqrt{10}=3\)