Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Để \(\frac{n+4}{n+1}\in Z\)
\(\Rightarrow n+4⋮n+1\)
\(\Rightarrow n+1+3⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Rightarrow3⋮n+1\)
Lại có : \(n\in Z\Rightarrow n+1\in Z\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{0;-2;2;-4\right\}^{\left(1\right)}\)
Để \(\frac{2}{n-1}\in Z\)
\(\Rightarrow2⋮n-1\)
Lại có: \(n\in Z\Rightarrow n-1\in Z\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1\right\}^{\left(2\right)}\)
Từ (1) và (2) suy ra:
Để \(\frac{n+4}{n+1}\)và \(\frac{2}{n-1}\)đồng thời có giá trị nguyên thì n = 0 ; 2 ( thỏa mãn n là số nguyên )
a) Để \(\frac{n+2}{9}\in Z\)
\(\Rightarrow n+2⋮9\)
\(\Rightarrow n+2⋮3^{\left(1\right)}\)
Để \(\frac{n+3}{6}\in Z\)
\(\Rightarrow n+3⋮6\)
\(\Rightarrow n+3⋮3\)
\(\Rightarrow n⋮3^{\left(2\right)}\)
Từ (1) và (2) suy ra :
Ko tồn tại giá trị nào của n thỏa mãn đề bài
\(\frac{15}{n-2}\)là số nguyên khi 15 \(⋮\)n-2\(\Rightarrow\)n-2\(\in\){ 1;3;5;15;-1;-3;-5;-15}
\(\Rightarrow\)n\(\in\){ 3;5;7;17;1;-1;-3;-13}
\(\frac{8}{n+3}\)là số nguyên khi 8\(⋮\)n+3\(\Rightarrow\)n+3\(\in\){1;2;4;8;-1;-2;-4;-8}
\(\Rightarrow\)n\(\in\){ -2;-1;1;5;-4;-5;-7;-11}
\(\frac{-12}{n}\)là số nguyên khi -12 \(⋮\)n \(\Rightarrow\)n \(\in\){ 1;2;3;4;6;12;-1;-2;-3;-4;-6;-12}
các câu sau cũng tương tự
Tớ chỉ nói cách làm thôi:
Cậu tìm n để A là số nguyên, sau khi ra kết quả thì sẽ đánh số (1)
Rôi cậu tìm n đề B là số nguyên, sau khi ra kết quả sẽ đánh số (2)
Tương tự C cũng vậy.
Sau đó cậu xem trong cả ba phần (1),(2) và (3)
Những số nào trùng nhau sẽ là kết quả
Cậu sướng vì được bạn thân giải hộ nhé
nhớ k đấy
A = \(\frac{7}{N-1}\)=> N - 1 E Ư(7) = { -1 ; 1 ; -7 ; 7 }
TA CÓ BẢNG
N-1 | -1 | 1 | -7 | 7 |
N | 0 | 2 | -6 | 8 |
VẬY N E { 0 ; 2 ; -6 ; 8 }
B = \(\frac{-8}{N+2}\)=> N + 2 E Ư(-8) = {-1 ; -2 ; -4 ; -8 ; 1 ; 2 ; 4 ; 8 }
TA CÓ BẢNG
N+2 | -1 | -2 | -4 | -8 | 1 | 2 | 4 | 8 |
N | -3 | -4 | -6 | -10 | -1 | 0 | 2 | 6 |
VẬY N E { -3 ; -4 ; -6 ; -10 ; -1 ; 0 ; 2 ; 6 }
C = \(\frac{5}{N+3}\)=> N + 3 E Ư(5) = { -1 ; 1 ; -5 ;5 }
TA CÓ BẢNG
N+3 | -1 | 1 | -5 | 5 |
N | -4 | -2 | -8 | 2 |
VẬY N E { -4 ; -2 ; -8 ; 2 }
Để các phân số sau thuộc giá trị nguyên
=> tử phải chia hết cho mẫu(cách làm)
\(-\frac{12}{n}\) có giá trị nguyên khi -12\(⋮\)n
\(\Rightarrow n\inƯ\left(-12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vậy \(n\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)thì phân số \(-\frac{12}{n}\)có giá trị nguyên.
\(\frac{15}{n-2}\) có giá trị nguyên khi 15\(⋮\)n-2
\(\Rightarrow n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
\(\Rightarrow n\in\left\{1;3;-1;5;-3;7;-13;17\right\}\)
Vậy \(n\in\left\{1;3;-1;5;-3;7;-13;17\right\}\)thì phân số \(\frac{15}{n-2}\) có giá trị nguyên.
Phần cuối tương tự như phần thứ 2 nên bạn tự làm nhé!
Đặt A là tập hợp các giá trị của n trong \(\frac{-12}{n}\)
\(\frac{-12}{n}\)có giá trị nguyên => \(n\inƯ\left(-12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
=> \(A=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Đặt B là tập hợp các giá trị của n trong \(\frac{15}{n-2}\)
\(\frac{15}{n-2}\)có giá trị nguyên => \(n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)=> \(n\in\left\{3;1;5;-1;7;-3\right\}\)
=> \(B=\left\{3;1;5;-1;7;-3\right\}\)
Đặt C là tập hợp các giá trị của n trong \(\frac{8}{n+1}\)
\(\frac{8}{n+1}\)có giá trị nguyên => \(n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)=> \(n\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\)
=> \(C\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\)
=> A ∩ B ∩ C = { -3 ; 3 }
=> n = { -3 ; 3 } thì các phân số trên đều có giá trị nguyên
Có n thuộc Z
Có -8/n nguyên ( điều kiện để phân số tồn tại : n khác 0)
=> n thuộc Ư(-8) ( vì n thuộc Z) => n thuộc {1;-1;2;-2;4;-4;8;-8} (*)
Có 13/n-1 nguyên (điều kiện để phân số tồn tại : n khác 1)
=> n-1 thuộc Ư{13} ( vì n thuộc Z nên n-1 thuộc Z)
=> n-1 thuộc {1;-1;13;-13} => n thuộc {2;0;14;-12} (2*)
Có 4/n+2 nguyên ( điều kiện để phân số tồn tại : n khác -2)
=> n+2 thuộc Ư(4) ( vì n thuộc Z nên n+2 thuộc Z )
=> n+2 thuộc {1;2;4;-1;-2;-4} => n thuộc {-1;0;2;-3;-4;-6} (3*)
Từ (1*) ; (2*) và (3*) => n=2 ( thỏa mãn điều kiện n thuộc Z ; n khác 0; n khác 1; n khác -2)
Tích cho mk nhoa !!!!!! ~~~
Bài 6: Tìm các số nguyên 𝑥 , 𝑦 , 𝑧 x,y,z Bạn đã cho một hệ phương trình phức tạp, nhưng tôi sẽ cố gắng làm rõ và giải quyết từng bước. Các phương trình là: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 84=x−10 −10 x − 10 𝑥 = − 7 𝑦 −10x=−7y 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z Chúng ta sẽ phân tích từng phương trình. Phương trình 1: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 84=x−10 −10 x Dường như có sự nhầm lẫn trong cách viết phương trình này, vì nó không rõ ràng. Tuy nhiên, tôi đoán bạn muốn nói 48 4 8 = 𝑥 − 10 × 𝑥 − 10 48 8 4 =x−10× −10 x . Để làm rõ, 48 4 8 48 8 4 có thể viết là 48.5 48.5 (tức là 48 + 4 8 = 48.5 48+ 8 4 =48.5). Phương trình trên có thể viết lại như sau: 48.5 = 𝑥 + 𝑥 48.5=x+x 48.5 = 2 𝑥 48.5=2x 𝑥 = 48.5 2 = 24.25 x= 2 48.5 =24.25 Tuy nhiên, 𝑥 = 24.25 x=24.25 không phải là một số nguyên, nên có thể có sự nhầm lẫn trong cách viết phương trình. Phương trình 2: − 10 𝑥 = − 7 𝑦 −10x=−7y Ta có − 10 𝑥 = − 7 𝑦 −10x=−7y, hay là 10 𝑥 = 7 𝑦 10x=7y. Phương trình này cho thấy rằng 𝑥 x và 𝑦 y phải có một tỷ lệ đặc biệt sao cho khi nhân 𝑥 x với 10, kết quả phải là nhân 𝑦 y với 7. Do 𝑥 x và 𝑦 y là các số nguyên, ta có thể tìm các giá trị của 𝑥 x và 𝑦 y thỏa mãn điều kiện này. Phương trình 3: 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z Giống như phương trình đầu tiên, biểu thức này không hoàn toàn rõ ràng. Tuy nhiên, nếu giả sử bạn muốn viết 𝑦 − 7 = 𝑧 + 𝑧 24 y−7=z+ 24 z , ta có thể tiếp tục phân tích. Bài 7: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 a) Tìm các số nguyên 𝑛 n để 𝐴 A là phân số: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 là một phân số nếu mẫu số khác 0. Do đó, 𝑛 − 2 ≠ 0 n−2 =0, tức là 𝑛 ≠ 2 n =2. Vậy, 𝐴 A sẽ là phân số với tất cả các số nguyên 𝑛 n ngoại trừ 𝑛 = 2 n=2. b) Tìm các số nguyên 𝑛 n để 𝐴 A là số nguyên: Để 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 là một số nguyên, mẫu số phải chia hết cho tử số. Ta xét phép chia 3 𝑛 − 2 𝑛 − 2 n−2 3n−2 . Ta thực hiện phép chia polynom: 3 𝑛 − 2 𝑛 − 2 = 3 + 4 𝑛 − 2 n−2 3n−2 =3+ n−2 4 Để 𝐴 A là một số nguyên, phần dư 4 𝑛 − 2 n−2 4 phải là một số nguyên, nghĩa là 𝑛 − 2 n−2 phải là một ước của 4. Các ước của 4 là: ± 1 , ± 2 , ± 4 ±1,±2,±4. Do đó, 𝑛 − 2 n−2 có thể là 1 , − 1 , 2 , − 2 , 4 , − 4 1,−1,2,−2,4,−4. Từ đó, ta có: 𝑛 − 2 = 1 ⇒ 𝑛 = 3 n−2=1⇒n=3 𝑛 − 2 = − 1 ⇒ 𝑛 = 1 n−2=−1⇒n=1 𝑛 − 2 = 2 ⇒ 𝑛 = 4 n−2=2⇒n=4 𝑛 − 2 = − 2 ⇒ 𝑛 = 0 n−2=−2⇒n=0 𝑛 − 2 = 4 ⇒ 𝑛 = 6 n−2=4⇒n=6 𝑛 − 2 = − 4 ⇒ 𝑛 = − 2 n−2=−4⇒n=−2 Vậy các giá trị của 𝑛 n để 𝐴 A là một số nguyên là: 𝑛 = − 2 , 0 , 1 , 3 , 4 , 6 n=−2,0,1,3,4,6. Hy vọng tôi đã giúp bạn hiểu rõ hơn về các bài toán này! Nếu cần giải thích thêm hoặc có thêm câu hỏi, bạn có thể hỏi tiếp.
Đề sai khỏi làm
Để n+2/9 la so nguyen
=> n+2 chia het cho 9
=> n+2 chia het cho 3(1)
Để n+3/6 la so nguyen
=> n+3 chia het cho 6
=> n+3 chia het cho 3
=> n chia het cho 3 (2)
Tu 1 va 2 => k ton tai gia chi cua n thoa man de bai