
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : \(\hept{\begin{cases}\left|7x-5y\right|\ge0\forall x;y\\\left|2z-3x\right|\ge0\forall x;z\\\left|xy+yz+zx-2000\right|\ge0\forall x;y;z\end{cases}\Rightarrow\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\ge0}\)
Dấu bằng xảy ra <=> \(\hept{\begin{cases}7x=5y\\2z=3x\\xy+yz+zx=2000\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{7}\\\frac{z}{3}=\frac{x}{2}\\xy+yz+zx=2000\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}\\\frac{z}{15}=\frac{x}{10}\\xy+yz+zx=2000\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\xy+yz+zx=2000\left(1\right)\end{cases}}\)
Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\)
Khi đó (1) <=> 140k2 + 210k2 + 150k2 = 2000
=> k2(140 + 150 + 210) = 2000
=> k2 = 4
=> k2 = 22
=> k = \(\pm2\)
Nếu k = 2
=> \(\hept{\begin{cases}x=20\\y=28\\z=30\end{cases}}\)
Nếu k = - 2
=> \(\hept{\begin{cases}x=-20\\y=-28\\z=-30\end{cases}}\)
Ta có: \(\left|7x-5y\right|,\left|2z-3x\right|,\left|xy+yz+zx-2000\right|\ge0\)
\(\Rightarrow\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\ge\)
\(\Rightarrow\hept{\begin{cases}7x-5y=0\\2z-3x=0\\xy+yz+zx-2000=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7x=5y\Rightarrow\frac{y}{x}=\frac{7}{5}=\frac{14}{10}\\2z=3x\Rightarrow\frac{z}{x}=\frac{3}{2}=\frac{15}{10}\\xy+yz+zx=2000\end{cases}}\)
\(\Rightarrow y=14k;x=10k;z=15k\)
\(\Rightarrow10k.14k+14k.15k+15k.10k=2000\)
\(\Rightarrow k^2.\left(140+210+150\right)=2000\)
\(\Rightarrow k^2=4=2^2=\left(-2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x=20;y=28;z=30\\x=-20;y=-28;z=-30\end{cases}}\)

Đề bài thiếu rồi em, phải có x,y,z là số nguyên nữa.
Nếu \(x\ge0\Rightarrow\left|x\right|+3x=x+3x=4x\) chẵn
Nếu \(x<0\Rightarrow\left|x\right|+3x=-x+3x=2x\) chẵn
Nếu \(y\ge0\Rightarrow\left|y\right|+5y=6y\) chẵn
Nếu \(y<0\Rightarrow\left|y\right|+5y=4y\) chẵn
\(\Rightarrow\left|x\right|+\left|y\right|+3x+5y\) luôn chẵn với mọi x,y nguyên
Mà 2z cũng là số chẵn
\(\Rightarrow\left|x\right|+\left|y\right|+3x+5y+2z\) luôn chẵn
Mặt khác 2025 là số lẻ
=> ko tồn tại x,y,z nguyên thỏa mãn \(\left|x\right|+\left|y\right|+3x+5y+2z=2025\)
Cho phương trình:
\(\mid x \mid + \mid y \mid + 3 x + 5 y + 2 z = 2025\)
với \(x , y , z \in \mathbb{R}\).
Bước 1: Phân tích các trường hợp theo dấu của \(x\) và \(y\)
Ta có giá trị tuyệt đối của \(x\) và \(y\) phụ thuộc vào dấu của chúng:
Bước 2: Xét 4 trường hợp cho dấu của \(x , y\)
Trường hợp 1: \(x \geq 0 , y \geq 0\)
\(\mid x \mid = x , \mid y \mid = y\)
Phương trình trở thành:
\(x + y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 x + 6 y + 2 z = 2025\)
Trường hợp 2: \(x \geq 0 , y < 0\)
\(\mid x \mid = x , \mid y \mid = - y\)
Phương trình:
\(x - y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 x + 4 y + 2 z = 2025\)
Trường hợp 3: \(x < 0 , y \geq 0\)
\(\mid x \mid = - x , \mid y \mid = y\)
Phương trình:
\(- x + y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 x + 6 y + 2 z = 2025\)
Trường hợp 4: \(x < 0 , y < 0\)
\(\mid x \mid = - x , \mid y \mid = - y\)
Phương trình:
\(- x - y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 x + 4 y + 2 z = 2025\)
Bước 3: Viết lại các phương trình tương ứng:
Trường hợp
Phương trình
1:
\(x \geq 0 , y \geq 0\)x≥0,y≥0x≥0,y≥0
\(4 x + 6 y + 2 z = 2025\)4x+6y+2z=20254x+6y+2z=2025
2:
\(x \geq 0 , y < 0\)x≥0,y<0x≥0,y<0
\(4 x + 4 y + 2 z = 2025\)4x+4y+2z=20254x+4y+2z=2025
3:
\(x < 0 , y \geq 0\)x<0,y≥0x<0,y≥0
\(2 x + 6 y + 2 z = 2025\)2x+6y+2z=20252x+6y+2z=2025
4:
\(x < 0 , y < 0\)x<0,y<0x<0,y<0
\(2 x + 4 y + 2 z = 2025\)2x+4y+2z=20252x+4y+2z=2025
Bước 4: Giải hệ cho từng trường hợp (theo tham số)
Ví dụ với trường hợp 1:
\(4 x + 6 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 z = 2025 - 4 x - 6 y \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } z = \frac{2025 - 4 x - 6 y}{2}\)
với điều kiện \(x \geq 0 , y \geq 0\).
Tương tự cho các trường hợp còn lại, ta có thể biểu diễn \(z\) theo \(x , y\) và các điều kiện về dấu.
Kết luận:
\(\text{N} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; x \geq 0 , y \geq 0 , z = \frac{2025 - 4 x - 6 y}{2}\)
và các trường hợp khác tương tự.