\(4x^2+7x+1=2\sqrt{x+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 giờ trước (15:06)

x = o,25 nha bạn còn bạn biết giải ra một bài toán ko thì mik ko biết

S
7 giờ trước (15:31)

đặt \(t=\sqrt{x+2}\) (t>=0), suy ra \(x=t^2-2\)

ta có: \(4\cdot\left(t^2-2\right)^2+7\cdot\left(t^2-2\right)+1=2t\)

\(4t^4-16t^2+16+7t^2-14+1=2t\)

\(4t^4-9t^2-2t+3=0\)

\(4t^4-4t^2-5t^2-2t+3=0\)

\(4t^2\cdot\left(t^2-1\right)-\left(5t^2+2t-3\right)=0\)

\(4t^2\left(t-1\right)\left(t+1\right)-\left(5t-3\right)\left(t+1\right)=0\)

\(\left(t+1\right)\cdot\left\lbrack4t^2\left(t-1\right)-\left(5t-3\right)\right\rbrack=0\)

\(\left(t+1\right)\cdot\left(4t^3-4t^2-5t+3\right)=0\)

\(\left(t+1\right)\left(t+1\right)\left(t-1,5\right)\left(t-0,5\right)=0\)

\(\left[\begin{array}{l}t-1=0\Rightarrow t=-1\left(loại\right)\\ t-1,5=0\Rightarrow t=1,5\\ t-0,5=0\Rightarrow t=0,5\end{array}\right.\)

với t=1,5: \(1,5=\sqrt{x+2}\Rightarrow x=0,25\)

với t=0,5: \(0,5=\sqrt{x+2}\Rightarrow x=-1,75\)

vậy phương trình có 2 nghiệm là x = 0,25; x = 1,75

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

7 tháng 8 2018

( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1) 
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ] 
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ] 
Đặt a = ( x + 1 ) ( x + 4 ) 
(1) <=> a = 5 căn ( a + 24 ) 
<=> a^2 = 25 ( a + 24 ) 
<=> a^2 - 25a - 600 = 0 
<=> a1 = 40 
a2 = -15 

với a = 40 ta có: 
( x + 1 ) ( x + 4 ) = 40 
<=> x^2 + 5x + 4 = 40 
<=> x^2 + 5x - 36 = 0 
<=> x = 4 và x = - 9 

với a = -15, ta có: 
( x + 1 ) ( x + 4 ) = -15 
<=> x^2 + 5x + 4 = -15 
<=> x^2 + 5x + 19 = 0 
delta < 0 => pt vô nghiệm 

Vậy s = { -9; 4}

12 tháng 8 2017

câu 2 đề sai

12 tháng 8 2017

ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !

câu 1 ) thì đúng

câu 2 sai đề

14 tháng 10 2019

a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)

ĐKXĐ: .....

Đặt \(x^2-7x=t\)

Phương trình trở thành

\(t+\sqrt{t+8}=12\)

\(\Leftrightarrow\sqrt{t+8}=12-t\)

\(\Leftrightarrow t+8=\left(12-t\right)^2\)

\(\Leftrightarrow t+8=144-24t+t^2\)

\(\Leftrightarrow t^2-25t+136=0\)

\(\Leftrightarrow\left(t-17\right)\left(t-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-17=0\\t-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=17\\t=8\end{cases}}}\)

tại t = 17 , ta có

\(x^2-7x=17\Leftrightarrow x^2-7x-17=0\)

\(\Leftrightarrow.......\)

Tại t = 8 ta có

\(x^2-7x=8\Leftrightarrow x^2-7x-8=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}}\)

b, \(x^2+4x+5=2\sqrt{2x+3}\)

mik ko bt :)

14 tháng 10 2019

a,đkxđ:\(x^2-7x+8\ge0\Leftrightarrow x^2-2\cdot\frac{7}{2}x+\frac{49}{4}-\frac{17}{4}\ge0\Leftrightarrow\left(x-\frac{7}{2}\right)^2\ge\frac{17}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{7}{2}\ge\frac{\sqrt{17}}{2}\approx2,06\\x-\frac{7}{2}\le-\frac{\sqrt{17}}{2}\approx-2,06\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5,56\\x\le1,44\end{cases}}\)

\(\Leftrightarrow\left(x^2-7x+8\right)+\sqrt{x^2-7x+8}=12+8=20\)

\(\Leftrightarrow4\left(x^2-7x+8\right)+4\sqrt{x^2-7x+8}+1=20\cdot4+1=81\)

\(\Leftrightarrow\left(2\sqrt{x^2-7x+8}+1\right)^2=81\)

\(\Leftrightarrow2\sqrt{x^2-7x+8}+1=\pm9\)

Mà vế trái >0 nên \(2\sqrt{x^2-7x+8}+1=9\)

\(\Leftrightarrow\sqrt{x^2-7x+8}=\frac{9-1}{2}=4\)

\(\Leftrightarrow x^2-7x+8=16\)

\(\Leftrightarrow x^2-7x-8=0\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)

\(\left(x-1\right)\left(\sqrt{3x+4}-1\right)=3\left(x+1\right)\)

\(\Leftrightarrow x=7\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

5 tháng 8 2017

 (x−1)(√3x+4−1)=3(x+1)  ⇔x=7

tk mk nha

9 tháng 10 2019

a.

\(DK:49-28x-4x^2\ge0\)

PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)

\(\Leftrightarrow49-28x-4x^2=25\)

\(\Leftrightarrow4x^2+28x-24=0\)

\(\Leftrightarrow x^2+7x-6=0\)

Ta co:

\(\Delta=7^2-4.1.\left(-6\right)=73>0\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)

Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)

19 tháng 8 2016

a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)

b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)

<=> 3 = 0 (vô lý)

=> pt vô nghiệm.

 

19 tháng 8 2016

c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)

\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)

d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))

\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)

Vậy pt vô nghiệm.