Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK 1 :
Để x là số hữu tỉ thì x phải xác định được tức là \(b-15\ne0\)vì vậy điều kiện để xác định x là số hữu tỉ là :
\(b\ne15\)
ĐK 2 :
x là số hữu tỉ dương thì \(\frac{12}{b-15}>0\)mà \(12>0\Rightarrow b-15>0\)
\(\Leftrightarrow b>-15\)hay \(b\in\left\{-14;-13;...;14;13;......\right\}\)
ĐK 3 :
x là số hữu tỉ âm
Ta có : \(\frac{12}{b-15}< 0\Rightarrow12>0\Leftrightarrow b-15< 0\)
Vậy tập xác định của b là :
\(b< 15\Leftrightarrow b\in\left\{14;13;12;.....;0;-1;-2;....\right\}\)
ĐK 4 :
x = -1
x = -1 thì \(12\)và \(b-15\)là 2 số đối nhau mà \(12>0\Rightarrow b-15< 0\)
\(\Rightarrow\hept{\begin{cases}b-15< 0\\b-15=-12\end{cases}}\Leftrightarrow b=3\)
để x thuộc Z thì 12 chia het cho b-15
=>b-15 thuộc ước của (12)=[ -1,1,2,-2,3,-3,4,-4,6,-6,12,-12]
x là số hửu tỉ dương =>x=1 ,2 ,3 ,4 ,6 ,12 vậy b-15 lần lượt=12 , 6 ,4 , 3,2 ,1=> b lần lượt bằng= 27 ,21 ,19 , 18 , 17 , 16
x là số hữu tỉ âm => x=-1 , -2 ,-3 ,-4 ,-6 -12 => b=3 , 9 , 11 , 12 ,13 ,14
x=-1 =>b-15 = -12 => x=3

Bài 1: Cho 1 ví dụ để bác bỏ các ý kiến sau:
a) Tổng của 2 số vô tỉ là 1 số vô tỉ
Ý kiến: Tổng của hai số vô tỉ luôn là số vô tỉ.
Bác bỏ: Tổng của hai số vô tỉ có thể là một số hữu tỉ.
Ví dụ: Chọn \(x = \sqrt{2}\) và \(y = - \sqrt{2}\).
Tổng của chúng là:
\(x + y = \sqrt{2} + \left(\right. - \sqrt{2} \left.\right) = 0\)
Vì 0 là một số hữu tỉ, nên tổng của hai số vô tỉ này là một số hữu tỉ. Điều này bác bỏ ý kiến rằng tổng của hai số vô tỉ luôn là vô tỉ.
b) Hiệu của 2 số vô tỉ là 1 số vô tỉ
Ý kiến: Hiệu của hai số vô tỉ luôn là số vô tỉ.
Bác bỏ: Hiệu của hai số vô tỉ có thể là một số hữu tỉ.
Ví dụ: Chọn \(x = \sqrt{2}\) và \(y = \sqrt{2}\).
Hiệu của chúng là:
\(x - y = \sqrt{2} - \sqrt{2} = 0\)
Vì 0 là một số hữu tỉ, nên hiệu của hai số vô tỉ này là một số hữu tỉ. Điều này bác bỏ ý kiến rằng hiệu của hai số vô tỉ luôn là vô tỉ.
c) Tích của 2 số vô tỉ là 1 số vô tỉ
Ý kiến: Tích của hai số vô tỉ luôn là vô tỉ.
Bác bỏ: Tích của hai số vô tỉ có thể là một số hữu tỉ.
Ví dụ: Chọn \(x = \sqrt{2}\) và \(y = \frac{1}{\sqrt{2}}\).
Tích của chúng là:
\(x \cdot y = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1\)
Vì 1 là một số hữu tỉ, nên tích của hai số vô tỉ này là một số hữu tỉ. Điều này bác bỏ ý kiến rằng tích của hai số vô tỉ luôn là vô tỉ.
d) Thương của 2 số vô tỉ là 1 số vô tỉ
Ý kiến: Thương của hai số vô tỉ luôn là vô tỉ.
Bác bỏ: Thương của hai số vô tỉ có thể là một số hữu tỉ.
Ví dụ: Chọn \(x = \sqrt{2}\) và \(y = \sqrt{2}\).
Thương của chúng là:
\(\frac{x}{y} = \frac{\sqrt{2}}{\sqrt{2}} = 1\)
Vì 1 là một số hữu tỉ, nên thương của hai số vô tỉ này là một số hữu tỉ. Điều này bác bỏ ý kiến rằng thương của hai số vô tỉ luôn là vô tỉ.
Bài 2: Tìm \(x\), \(y\), \(z\)
a) Giải phương trình:
\(\mid x + \frac{19}{5} \mid + \mid y + \frac{1890}{1975} \mid + \mid z - 2023 \mid = 0\)
Để tổng của ba giá trị tuyệt đối bằng 0, mỗi giá trị trong các dấu giá trị tuyệt đối phải bằng 0. Do đó, ta có:
\(x + \frac{19}{5} = 0 , y + \frac{1890}{1975} = 0 , z - 2023 = 0\)
Giải các phương trình trên:
- \(x = - \frac{19}{5}\)
- \(y = - \frac{1890}{1975}\)
- \(z = 2023\)
Vậy:
\(x = - \frac{19}{5} , y = - \frac{1890}{1975} , z = 2023\)
b) Giải phương trình:
\(\mid x - \frac{9}{2} \mid + \mid y + \frac{4}{3} \mid + \mid z + \frac{7}{2} \mid \leq 0\)
Tổng của ba giá trị tuyệt đối không thể nhỏ hơn 0, và tổng này chỉ bằng 0 khi mỗi giá trị tuyệt đối đều bằng 0. Vì vậy, ta có:
\(x - \frac{9}{2} = 0 , y + \frac{4}{3} = 0 , z + \frac{7}{2} = 0\)
Giải các phương trình trên:
- \(x = \frac{9}{2}\)
- \(y = - \frac{4}{3}\)
- \(z = - \frac{7}{2}\)
Vậy:
\(x = \frac{9}{2} , y = - \frac{4}{3} , z = - \frac{7}{2}\)
Bài 3: Tìm giá trị nhỏ nhất của các biểu thức
a) Tìm giá trị nhỏ nhất của biểu thức:
\(A = \mid 2 x - \frac{1}{3} \mid + 107\)
Biểu thức \(A\) có giá trị nhỏ nhất khi \(\mid 2 x - \frac{1}{3} \mid = 0\), tức là \(2 x = \frac{1}{3}\), hoặc \(x = \frac{1}{6}\).
Khi \(x = \frac{1}{6}\), ta có:
\(A = 0 + 107 = 107\)
Vậy giá trị nhỏ nhất của \(A\) là 107.
b) Tìm giá trị nhỏ nhất của biểu thức:
\(B = \mid x + \frac{1}{2} \mid + \mid x + \frac{1}{3} \mid + \mid x + \frac{1}{4} \mid\)
Để giá trị của \(B\) nhỏ nhất, ta cần chọn giá trị của \(x\) sao cho các giá trị tuyệt đối trong biểu thức nhỏ nhất. Các điểm mà các giá trị tuyệt đối bằng 0 là:
\(x = - \frac{1}{2} , x = - \frac{1}{3} , x = - \frac{1}{4}\)
Do đó, ta chọn giá trị \(x = - \frac{1}{3}\) vì nó nằm giữa các giá trị trên, giúp các giá trị tuyệt đối đạt giá trị nhỏ nhất. Khi \(x = - \frac{1}{3}\), ta có:
\(B = \mid - \frac{1}{3} + \frac{1}{2} \mid + \mid - \frac{1}{3} + \frac{1}{3} \mid + \mid - \frac{1}{3} + \frac{1}{4} \mid\)
Tính các giá trị:
\(B = \mid - \frac{1}{3} + \frac{1}{2} \mid + 0 + \mid - \frac{1}{3} + \frac{1}{4} \mid\)\(B = \mid - \frac{2}{6} + \frac{3}{6} \mid + 0 + \mid - \frac{4}{12} + \frac{3}{12} \mid\)\(B = \frac{1}{6} + 0 + \frac{1}{12} = \frac{2}{12} + \frac{1}{12} = \frac{3}{12} = \frac{1}{4}\)
Vậy giá trị nhỏ nhất của \(B\) là \(\frac{1}{4}\).

9x2/4x = 64/4x
=>9x2=64
x2 = 64/9
x = 8/3 hoặc là (-8)/3
mà x là âm => x= (-8)/3
k cho a nha

Nếu số người làm không giảm đi thì đến ngày đã định đội đó là được số phần công việc là:1 - \(\frac{1}{3}\) = \(\frac{2}{3}\) (công việc)
Vì lượng công việc tỉ lệ thuận với số người nên
Nếu số người giảm đi 1 nửa thì số lượng công việc cũng giảm đi 1 nửa
Vậy đến ngày đã định đội đó làm thêm được số phần công việc là: \(\frac{2}{3}\): 2 = \(\frac{1}{3}\) (công việc)
Vậy số phần công việc đội đó làm được tất cả là: \(\frac{1}{3}\)+ \(\frac{1}{3}\) = \(\frac{2}{3}\) (công việc)
ĐS:...
các bạn có thể trình bày bằng dạng toán tỉ lệ thuận được ko

Bg
Ta có: A = 3 + 32 + 33 +...+ 32016
=> 3A = 3.(3 + 32 + 33 +...+ 32016)
=> 3A = 32 + 33 + 34 +...+ 32017
=> 3A - A = (32 + 33 + 34 +...+ 32017) - (3 + 32 + 33 +...+ 32016)
=> 2A = 32017 - 3
=> A = (32017 - 3) ÷ 2
a) => A = (34.504 + 1 - 3) ÷ 2
Dạng 34k + 1 (với k thuộc N) = (...3)
=> A = [(...3) - 3] ÷ 2
=> A = (...0) ÷ 2
=> A = (...5) hay A = (...0)
Câu b chưa làm được xin lỗi bạn nhiều!
À, nghĩ ra câu b rồi:
b) Ta có A chia hết cho 3 => nếu A là số chính phương thì A chia hết cho 32 => A chia hết cho 9
A = (32017 - 3) ÷ 2
=> A = 3.(32016 - 1) ÷ 2
=> A = 3 ÷ 2.(32016 - 1)
=> A = 1,5.(32016 - 1)
=> A = 1,5.(32.1008 - 1)
=> A = 1,5.(91008 - 1)
Vì 91008 chia hết cho 9 mà 1 không chia hết cho 9
=> 91008 - 1 không chia hết cho 9
Và 1,5 không chia hết cho 9
=> 1,5.(91008 - 1) không chia hết cho 9
=> A = 3 + 32 + 33 +...+ 32016 không chia hết cho 9
=> A không phải là số chính phương.
\(0,68\left(18\right)=\frac{15}{22}\)
giải thích