K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8

Gọi \(\angle A O C = \alpha\). Đây là góc ở tâm chắn cung \(A C\)

Quan sát hình: cung \(B D\) gồm 3 lần liên tiếp cung \(A C\) (từ B → C, C → A, A → D)

Góc ở tâm \(\angle B O D\) chắn cung \(B D\) nên:

\(\angle B O D = 3 \times \angle A O C .\)

Vậy \(\angle B O D = 3 \angle A O C\)

a: Xét (HA/2) có

ΔAEH nội tiếp

AH là đường kính

Do đó: ΔAEH vuông tại E

=>HE⊥AB tại E

Xét (HA/2) có

ΔAFH nội tiếp

AH là đường kính

Do đó: ΔAFH vuông tại F

=>HF⊥AC tại F

Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC=AH^2\)

Ta có: \(AE\cdot AB=AF\cdot AC\)

=>\(\frac{AE}{AC}=\frac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\frac{AE}{AC}=\frac{AF}{AB}\)

Do đó: ΔAEF~ΔACB

b: Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(\hat{AFE}=\hat{AHE}\)

\(\hat{AHE}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{AFE}=\hat{ABC}\)

ΔOAC cân tại O

=>\(\hat{OAC}=\hat{OCA}=\hat{ACB}\)

\(\hat{AFE}+\hat{OAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AO⊥ FE

c: Xét (O) có

ΔAKH nội tiếp

AH là đường kính

Do đó: ΔAKH vuông tại K

=>HK⊥AT tại K

Xét ΔAHT vuông tại H có HK là đường cao

nên \(AK\cdot AT=AH^2\)

=>\(AK\cdot AT=AE\cdot AB\)

=>\(\frac{AK}{AE}=\frac{AB}{AT}\)

Xét ΔAKB và ΔAET có

\(\frac{AK}{AE}=\frac{AB}{AT}\)

góc KAB chung

Do đó: ΔAKB~ΔAET

=>\(\hat{AKB}=\hat{AET}\)

d: ta có: A,C,B,K cùng thuộc (O)

=>ACBK nội tiếp

=>\(\hat{ACB}+\hat{AKB}=180^0\)

\(\hat{AKB}+\hat{AKI}=180^0\) (hai góc kề bù)

nên \(\hat{IKA}=\hat{ICB}\)

Xét ΔIKA và ΔICB có

\(\hat{IKA}=\hat{ICB}\)

góc KIA chung

Do đó: ΔIKA~ΔICB

Gọi H là trực tâm của ΔABC

=>BH⊥AC; CH⊥AB; AH⊥BC

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD⊥BA

mà CH⊥AB

nên CH//BD

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CA⊥CD
mà BH⊥CA

nên BH//CD

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà X là trung điểm của BC

nên X là trung điểm của DH

=>DX đi qua H(1)

Xét (O) có

ΔBCE nội tiếp

BE là đường kính

Do đó: ΔBCE vuông tại C

=>CB⊥CE

mà AH⊥CB

nên AH//CE

Xét (O) có

ΔEAB nội tiếp

BE là đường kính

Do đó: ΔBAE vuông tại A

=>AE⊥AB

mà CH⊥AB

nên AE//CH

Xét tứ giác AHCE có

AH//CE

AE//CH

Do đó: AHCE là hình bình hành

=>AC cắt HE tại trung điểm của mỗi đường

mà Y là trung điểm của AC

nên Y là trung điểm của EH

=>EY đi qua H(2)

Xét (O) có

ΔFAC nội tiếp

FC là đường kính

Do đó: ΔFAC vuông tại A

=>AF⊥ AC

mà BH⊥AC

nên AF//BH

Xét (O) có

ΔFBC nội tiếp

FC là đường kính

Do đó: ΔFBC vuông tại B

=>BF⊥BC

mà AH⊥BC

nên AH//BF

Xét tứ giác AHBF có

AH//BF

AF//BH

Do đó: AHBF là hình bình hành

=>AB cắt HF tại trung điểm của mỗi đường

mà Z là trung điểm của AB

nên Z là trung điểm của FH

=>FZ đi qua H(3)

Từ (1),(2),(3) suy ra DX,EY,FZ đồng quy tại H

a: Xét (O) có

AD,BC là các dây không song song

AB//CD

Do đó: sđ cung AD=sđ cung BC

b: Ta có: ABCD là tứ giác nội tiếp

=>\(\hat{ADC}+\hat{ABC}=180^0\)

\(\hat{ABC}+\hat{BCD}=180^0\) (hai góc trong cùng phía, AB//CD)

nên \(\hat{ADC}=\hat{BCD}\)

Hình thang ABCD có \(\hat{ADC}=\hat{BCD}\)

nên ABCD là hình thang cân

Bài 3:

a: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét ΔBOD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBOD cân tại B

=>BO=BD

ma BO=OD

nên BO=BD=OD

=>ΔBOD đều

=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>\(\hat{BAD}+\hat{BDA}=90^0\)

=>\(\hat{BAD}=90^0-60^0=30^0\)

Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

=>AB=AC

ΔAIB=ΔAIC

=>\(\hat{IAB}=\hat{IAC}\)

=>AI là phân giác của góc BAC

=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)

nên ΔABC đều

b: ΔOBD đều

=>BD=OB=R

ΔABD vuông tại B

=>\(BA^2+BD^2=AD^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt3\)

=>\(BA=AC=BC=R\sqrt3\)


a: Xét (O) có

ΔABP nội tiếp

AP là đường kính

Do đó: ΔABP vuông tại B

=>BA⊥BP

mà CH⊥BA

nên CH//BP

Xét (O) có

ΔACP nội tiếp

AP là đường kính

Do đó: ΔACP vuông tại C

=>CP⊥CA

mà BH⊥CA

nên BH//CP

Xét tứ giác BHCP có

BH//CP

BP//CH

Do đó: BHCP là hình bình hành

Gọi HP cắt CB tại I

BHCP là hình bình hành

=>BC cắt HP tại trung điểm của mỗi đường

=>I là trung điểm chung của HP và BC

Xét (O) có

ΔAKP nội tiếp

AP là đường kính

Do đó: ΔAKP vuông tại K

=>AK⊥KP

mà AK⊥BC

nên PK//BC

Xét ΔHKP có

I là trung điểm của HP

DI//KP

Do đó: D là trung điểm của HK

=>DH=DK

b: Xét ΔCKH có

CD là đường cao

CD là đường trung tuyến

Do đó: ΔCKH cân tại C

=>CH=CK

mà CH=BP

nên BP=CK

Xét tứ giác BCPK có

BC//PK

BP=CK

Do đó: BCPK là hình thang cân