
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét (HA/2) có
ΔAEH nội tiếp
AH là đường kính
Do đó: ΔAEH vuông tại E
=>HE⊥AB tại E
Xét (HA/2) có
ΔAFH nội tiếp
AH là đường kính
Do đó: ΔAFH vuông tại F
=>HF⊥AC tại F
Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC=AH^2\)
Ta có: \(AE\cdot AB=AF\cdot AC\)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\frac{AE}{AC}=\frac{AF}{AB}\)
Do đó: ΔAEF~ΔACB
b: Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(\hat{AFE}=\hat{AHE}\)
mà \(\hat{AHE}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)
nên \(\hat{AFE}=\hat{ABC}\)
ΔOAC cân tại O
=>\(\hat{OAC}=\hat{OCA}=\hat{ACB}\)
\(\hat{AFE}+\hat{OAC}=\hat{ABC}+\hat{ACB}=90^0\)
=>AO⊥ FE
c: Xét (O) có
ΔAKH nội tiếp
AH là đường kính
Do đó: ΔAKH vuông tại K
=>HK⊥AT tại K
Xét ΔAHT vuông tại H có HK là đường cao
nên \(AK\cdot AT=AH^2\)
=>\(AK\cdot AT=AE\cdot AB\)
=>\(\frac{AK}{AE}=\frac{AB}{AT}\)
Xét ΔAKB và ΔAET có
\(\frac{AK}{AE}=\frac{AB}{AT}\)
góc KAB chung
Do đó: ΔAKB~ΔAET
=>\(\hat{AKB}=\hat{AET}\)
d: ta có: A,C,B,K cùng thuộc (O)
=>ACBK nội tiếp
=>\(\hat{ACB}+\hat{AKB}=180^0\)
mà \(\hat{AKB}+\hat{AKI}=180^0\) (hai góc kề bù)
nên \(\hat{IKA}=\hat{ICB}\)
Xét ΔIKA và ΔICB có
\(\hat{IKA}=\hat{ICB}\)
góc KIA chung
Do đó: ΔIKA~ΔICB

Gọi H là trực tâm của ΔABC
=>BH⊥AC; CH⊥AB; AH⊥BC
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD⊥BA
mà CH⊥AB
nên CH//BD
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CA⊥CD
mà BH⊥CA
nên BH//CD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà X là trung điểm của BC
nên X là trung điểm của DH
=>DX đi qua H(1)
Xét (O) có
ΔBCE nội tiếp
BE là đường kính
Do đó: ΔBCE vuông tại C
=>CB⊥CE
mà AH⊥CB
nên AH//CE
Xét (O) có
ΔEAB nội tiếp
BE là đường kính
Do đó: ΔBAE vuông tại A
=>AE⊥AB
mà CH⊥AB
nên AE//CH
Xét tứ giác AHCE có
AH//CE
AE//CH
Do đó: AHCE là hình bình hành
=>AC cắt HE tại trung điểm của mỗi đường
mà Y là trung điểm của AC
nên Y là trung điểm của EH
=>EY đi qua H(2)
Xét (O) có
ΔFAC nội tiếp
FC là đường kính
Do đó: ΔFAC vuông tại A
=>AF⊥ AC
mà BH⊥AC
nên AF//BH
Xét (O) có
ΔFBC nội tiếp
FC là đường kính
Do đó: ΔFBC vuông tại B
=>BF⊥BC
mà AH⊥BC
nên AH//BF
Xét tứ giác AHBF có
AH//BF
AF//BH
Do đó: AHBF là hình bình hành
=>AB cắt HF tại trung điểm của mỗi đường
mà Z là trung điểm của AB
nên Z là trung điểm của FH
=>FZ đi qua H(3)
Từ (1),(2),(3) suy ra DX,EY,FZ đồng quy tại H

a: Xét (O) có
AD,BC là các dây không song song
AB//CD
Do đó: sđ cung AD=sđ cung BC
b: Ta có: ABCD là tứ giác nội tiếp
=>\(\hat{ADC}+\hat{ABC}=180^0\)
mà \(\hat{ABC}+\hat{BCD}=180^0\) (hai góc trong cùng phía, AB//CD)
nên \(\hat{ADC}=\hat{BCD}\)
Hình thang ABCD có \(\hat{ADC}=\hat{BCD}\)
nên ABCD là hình thang cân




Bài 3:
a: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
Xét ΔBOD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBOD cân tại B
=>BO=BD
ma BO=OD
nên BO=BD=OD
=>ΔBOD đều
=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>\(\hat{BAD}+\hat{BDA}=90^0\)
=>\(\hat{BAD}=90^0-60^0=30^0\)
Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
=>AB=AC
ΔAIB=ΔAIC
=>\(\hat{IAB}=\hat{IAC}\)
=>AI là phân giác của góc BAC
=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)
Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)
nên ΔABC đều
b: ΔOBD đều
=>BD=OB=R
ΔABD vuông tại B
=>\(BA^2+BD^2=AD^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt3\)
=>\(BA=AC=BC=R\sqrt3\)

a: Xét (O) có
ΔABP nội tiếp
AP là đường kính
Do đó: ΔABP vuông tại B
=>BA⊥BP
mà CH⊥BA
nên CH//BP
Xét (O) có
ΔACP nội tiếp
AP là đường kính
Do đó: ΔACP vuông tại C
=>CP⊥CA
mà BH⊥CA
nên BH//CP
Xét tứ giác BHCP có
BH//CP
BP//CH
Do đó: BHCP là hình bình hành
Gọi HP cắt CB tại I
BHCP là hình bình hành
=>BC cắt HP tại trung điểm của mỗi đường
=>I là trung điểm chung của HP và BC
Xét (O) có
ΔAKP nội tiếp
AP là đường kính
Do đó: ΔAKP vuông tại K
=>AK⊥KP
mà AK⊥BC
nên PK//BC
Xét ΔHKP có
I là trung điểm của HP
DI//KP
Do đó: D là trung điểm của HK
=>DH=DK
b: Xét ΔCKH có
CD là đường cao
CD là đường trung tuyến
Do đó: ΔCKH cân tại C
=>CH=CK
mà CH=BP
nên BP=CK
Xét tứ giác BCPK có
BC//PK
BP=CK
Do đó: BCPK là hình thang cân
Gọi \(\angle A O C = \alpha\). Đây là góc ở tâm chắn cung \(A C\)
Quan sát hình: cung \(B D\) gồm 3 lần liên tiếp cung \(A C\) (từ B → C, C → A, A → D)
Góc ở tâm \(\angle B O D\) chắn cung \(B D\) nên:
\(\angle B O D = 3 \times \angle A O C .\)
Vậy \(\angle B O D = 3 \angle A O C\)