K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8

tham khảo:\(\)


Bước 1: Hoàn thành bình phương

Ta nhóm và hoàn thành bình phương để nhìn rõ cấu trúc.

Với A:

\(x^{2} + 2 x + 2 y^{2} - 4 y + 5\)

  • Hoàn thành bình phương cho \(x\):

\(x^{2} + 2 x = \left(\right. x + 1 \left.\right)^{2} - 1\)

  • Với \(2 y^{2} - 4 y\):

\(2 \left(\right. y^{2} - 2 y \left.\right) = 2 \left[\right. \left(\right. y - 1 \left.\right)^{2} - 1 \left]\right. = 2 \left(\right. y - 1 \left.\right)^{2} - 2\)

  • Thay lại:

\(A = \left(\right. x + 1 \left.\right)^{2} - 1 + 2 \left(\right. y - 1 \left.\right)^{2} - 2 + 5\) \(A = \left(\right. x + 1 \left.\right)^{2} + 2 \left(\right. y - 1 \left.\right)^{2} + 2\)


Với B:

\(2 x^{2} + 4 x + y^{2} - 8 y + 10\)

  • Với \(2 x^{2} + 4 x\):

\(2 \left(\right. x^{2} + 2 x \left.\right) = 2 \left[\right. \left(\right. x + 1 \left.\right)^{2} - 1 \left]\right. = 2 \left(\right. x + 1 \left.\right)^{2} - 2\)

  • Với \(y^{2} - 8 y\):

\(y^{2} - 8 y = \left(\right. y - 4 \left.\right)^{2} - 16\)

  • Thay lại:

\(B = 2 \left(\right. x + 1 \left.\right)^{2} - 2 + \left(\right. y - 4 \left.\right)^{2} - 16 + 10\) \(B = 2 \left(\right. x + 1 \left.\right)^{2} + \left(\right. y - 4 \left.\right)^{2} - 8\)


Bước 2: Đặt biến mới

Đặt:

\(u = x + 1 , v = y - 1\)

Khi đó:

  • \(y - 4 = v - 3\)

Biểu thức trở thành:

\(A = u^{2} + 2 v^{2} + 2\) \(B = 2 u^{2} + \left(\right. v - 3 \left.\right)^{2} - 8\)


Bước 3: Giả sử chúng là số chính phương

Giả sử:

\(A = p^{2} , B = q^{2}\)

với \(p , q\) nguyên không âm.

Hệ:

\(u^{2} + 2 v^{2} + 2 = p^{2} \left(\right. 1 \left.\right)\) \(2 u^{2} + \left(\right. v - 3 \left.\right)^{2} - 8 = q^{2} \left(\right. 2 \left.\right)\)


Bước 4: Loại trừ

Từ (1) nhân 2:

\(2 u^{2} + 4 v^{2} + 4 = 2 p^{2}\)

So sánh với (2):

\(\left(\right. 2 u^{2} + 4 v^{2} + 4 \left.\right) - \left[\right. 2 u^{2} + \left(\right. v - 3 \left.\right)^{2} - 8 \left]\right. = 2 p^{2} - q^{2}\)

Rút gọn vế trái:

\(4 v^{2} + 4 - \left(\right. v^{2} - 6 v + 9 \left.\right) + 8 = 3 v^{2} + 6 v + 3\)

Vậy:

\(3 v^{2} + 6 v + 3 = 2 p^{2} - q^{2}\)

Nhận thấy:

\(3 v^{2} + 6 v + 3 = 3 \left(\right. v + 1 \left.\right)^{2}\)

Do đó:

\(3 \left(\right. v + 1 \left.\right)^{2} = 2 p^{2} - q^{2} \left(\right. 3 \left.\right)\)


Bước 5: Tìm nghiệm

(1) ⇒ \(u^{2} = p^{2} - 2 v^{2} - 2\) phải nguyên không âm.
(2) ⇒ \(u^{2} = \frac{q^{2} - \left(\right. v - 3 \left.\right)^{2} + 8}{2}\) cũng phải nguyên không âm.

Ta có thể thử giá trị nhỏ của \(v\) để xem có nghiệm nguyên không.

  • v = -1:
    Từ (3): \(0 = 2 p^{2} - q^{2}\)\(q^{2} = 2 p^{2}\) ⇒ không có nghiệm nguyên trừ \(p = q = 0\) nhưng khi đó (1) ⇒ \(u^{2} + 2 + 2 = 0\) vô lý.
  • v = 0:
    (3): \(3 = 2 p^{2} - q^{2}\). Thử p nhỏ thấy không khớp với (1),(2) cùng lúc.
  • Thử vài \(v\) khác, đều ra mâu thuẫn hoặc \(u^{2}\) âm.

Sau khi kiểm tra các giá trị \(v\) hợp lý, không xuất hiện cặp \(\left(\right. u , v \left.\right)\) nguyên nào thoả mãn đồng thời.


Kết luận:
Không tồn tại số nguyên \(x , y\) để cả hai biểu thức đều là số chính phương.

24 tháng 4 2020

Theo đề bài: 

 \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)

Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)

Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)

Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)

<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)

Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)

<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5) 

Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y 

=> \(M=9x^4+7x^4-12x^2+4x^2+5\)

\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)

Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)

Với x = 1/2 => (x; y) = ( 1/2; -1/2) 

Với x = -1/2 => ( x; y ) = ( -1/2; 1/2) 

Vậy min M = 4 đạt tại ....

7 tháng 5 2015

biết chết liền, vì em học lớp 1 mà. Xin lỗi chị nha. Có gì thì chị lên lớp hỏi bạn chị ấy

(x+2)2 + 2y(x+1) +y2 = -\(\sqrt{2x-3y-3}\)

\(\Leftrightarrow\)\(\left(x+y+1\right)^2=-\sqrt{2x-3y-3}\)

Ta có: \(\left(x+y+1\right)^2\ge o\)

Dấu "=" xảy ra khi và chỉ khi (x+y+1)2=0<=>x+y+1=0 (1)

Lại có: \(\sqrt{2x-3y-3}\ge0\)\(\Leftrightarrow-\sqrt{2x-3y-3}\le0\)

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{2x-3y-3}=0\)<=> 2x-3y-3=0(2)

Từ (1) và (2), ta có 1 hệ 2 phương trình hai ẩn, bạn dùng phương pháp thế để giài

Kết quả: x=0; y=-1

30 tháng 9 2016

Ta có y2 = 1 - x2

=> 1 - x2 \(\ge0\)

<=> \(-1\le x\le1\)

Kết hợp với điều kiện ban đầu ta được

\(0\le x\le1\)

P = \(\sqrt{1+2x}+\sqrt{1+2\sqrt{1-x^2}}\)

Hàm số này bị chặn 2 đầu nên ta xét x = 0 và x = 1 thì P = 1 + \(\sqrt{3}\)

Vậy GTNN là 1 + \(\sqrt{3}\)khi x = (0;1)

15 tháng 11 2016

1.ap dung bdt bunhiacopski

2.Ap dung Bdt can a + can b >= can (a+b) de tim min

Bunhiacopski de tim max

13 tháng 5 2020

ở xã hội này chỉ có làm mới có ăn những loại không làm mà đòi ăn thì ăn đầu bòi ăn cut nháa

3 tháng 3 2018

Xét \(pt(2):\) \(\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\)

\(\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)-\left(4x-2y-3\right)^2\left(x+2y\right)=0\)

\(\Leftrightarrow-8x^3+12x^2y+12x^2+44xy^2+8xy-3x-24y^3-32y^2-11y-1=0\)

\(\Leftrightarrow-\left(x-3y-1\right)\left(8x^2+12xy-4x-8y^2-8y-1\right)=0\)

\(\Rightarrow x=3y+1\) thay vào \(pt(1)\) ta có

\(pt\left(1\right)\Leftrightarrow\left(3y+1\right)^2-5y^2-8y=3\)

\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\left[{}\begin{matrix}y=1\Leftrightarrow x=4\\y=-\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)

14 tháng 6 2018

\(\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}=\frac{1}{a^2+a^2+b^2}+\frac{1}{b^2+b^2+c^2}+\frac{1}{c^2+c^2+a^2}\)

\(< =\frac{1}{9}\left(\frac{1}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{1}{9}\left(\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{1}{9}\left(\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{a^2}\right)\)(bđt svacxo)

\(=\frac{1}{9}\left(\frac{1}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{a^2}\right)=\frac{1}{9}\cdot3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(=\frac{1}{9}\cdot3\cdot\frac{1}{3}=\frac{1}{9}\cdot1=\frac{1}{9}\)

\(\Rightarrow\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}< =\frac{1}{9}\)(đpcm)

dấu = xảy ra khi \(\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}=\frac{1}{9}\Rightarrow a=b=c=3\)