
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a. áp dụnng định lý pythagore vào △ ABC vuông tại A ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(\operatorname{cm}\right)\)
b. diện tích △ ABC là:
\(\frac{6\cdot8}{2}=24\left(\operatorname{cm}^2\right)\)
c. ta có: \(BC\cdot AH=AB\cdot AC\)
\(\Rightarrow AH=\frac{AB\cdot AC}{BC}=\frac{6\cdot8}{10}=4,8\left(\operatorname{cm}\right)\)
áp dụng định lý pythagore vào △ ABH vuông tại H ta được:
\(HB=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6\left(\operatorname{cm}\right)\)
áp dụng định lý pythagore vào △ AHC vuông tại H ta được:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=6,4\left(\operatorname{cm}\right)\)
d. vì M là trung điểm của cạnh BC
⇒ MB = MC = BC : 2 = 10 : 2 = 5 (cm)
ta có: BH + HM = BM
⇒ HM = BM - BH = 5 - 3,6 = 1,4 (cm)
áp dụng định lý pythagore vào △ AHM vuông tại H ta có:
\(AM=\sqrt{AH^2+HM^2}=\sqrt{4,8^2+1,4^2}=5\left(\operatorname{cm}\right)\)

a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>\(HB=HC=\frac{BC}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=10^2-6^2=100-36=64=8^2\)
=>HA=8(cm)
b: Diện tích tam giác ABC là:
\(S_{ABC}=\frac12\cdot AH\cdot BC=\frac12\cdot12\cdot8=4\cdot12=48\left(\operatorname{cm}^2\right)\)


Bài 1:
a: \(\left(2a-b\right)\left(4a^2+2ab+b^2\right)\)
\(=8a^3+4a^2b+2ab^2-4a^2b-2ab^2-b^3\)
\(=8a^3-b^3\)
b: \(\left(3a+b\right)\left(9a^2-3ab+b^2\right)\)
\(=27a^3-9a^2b+3ab^2+9a^2b-3ab^2+b^3\)
\(=27a^3+b^3\)
c: \(\left(3a+2b\right)\left(3a-2b\right)-9a^2\)
\(=\left(3a\right)^2-\left(2b\right)^2-9a^2\)
\(=9a^2-4b^2-9a^2=-4b^2\)
d: \(\left(2x-3y\right)^2=\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2\)
\(=4x^2-12xy+9y^2\)
e: \(\left(3x-2y\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^3-54x^2y+36xy^2-8y^3\)
Bài 2:
a: \(\left(3x-5\right)\left(-5x+7\right)-\left(5x+2\right)\left(-3x+2\right)=4\)
=>\(-15x^2+21x+25x-35-\left(-15x^2+10x-6x+4\right)=4\)
=>\(-15x^2+46x-35+15x^2-4x-4=4\)
=>42x-39=4
=>42x=43
=>\(x=\frac{43}{42}\)
b: \(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)
=>\(6x^2-6x^2+4x-15x+10=7\)
=>-11x=7-10=-3
=>\(x=\frac{3}{11}\)


Bài 6:
a: \(A=n^2\left(n-1\right)+2n\left(1-n\right)\)
\(=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2-2n\right)=n\left(n-1\right)\left(n-2\right)\)
Vì n;n-1;n-2 là ba số nguyên liên tiếp
nên n(n-1)(n-2)⋮3!
=>n(n-1)(n-2)⋮6
=>A⋮6
b: \(M=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+12x-x-1\right)\left(12x^2+8x+3x+2\right)-4\)
\(=\left(12x^2+11x-1\right)\left(12x^2+11x+2\right)-4\)
\(=\left(12x^2+11x\right)^2+2\left(12x^2+11x\right)-\left(12x^2+11x\right)-2-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)
Bài 4:
a: \(A=x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)
\(=\left(x-y\right)^2\cdot\left(x-y\right)+xy\left(y-x\right)\)
\(=\left(x-y\right)^3-xy\left(x-y\right)\)
Khi x-y=5 và xy=4 thì \(A=5^3-4\cdot5=125-20=105\)
b: \(B=65^2-35^2+83^2-17^2\)
\(=\left(65-35\right)\left(65+35\right)+\left(83-17\right)\left(83+17\right)\)
\(=100\cdot30+100\cdot66=100\cdot96=9600\)
Bài 3:
a: \(4x\cdot\left(x+3\right)-x-3=0\)
=>4x(x+3)-(x+3)=0
=>(x+3)(4x-1)=0
=>\(\left[\begin{array}{l}x+3=0\\ 4x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=\frac14\end{array}\right.\)
b: \(x^2+4x=0\)
=>x(x+4)=0
=>\(\left[\begin{array}{l}x=0\\ x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-4\end{array}\right.\)
c: \(9x^2-\left(2x-1\right)^2=0\)
=>\(\left(3x\right)^2-\left(2x-1\right)^2=0\)
=>(3x-2x+1)(3x+2x-1)=0
=>(x+1)(5x-1)=0
=>\(\left[\begin{array}{l}x+1=0\\ 5x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-1\\ x=\frac15\end{array}\right.\)
d: \(\left(x^3-1\right)-\left(x-1\right)\left(x^2-5\right)=0\)
=>\(\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-5\right)=0\)
=>\(\left(x-1\right)\left(x^2+x+1-x^2+5\right)=0\)
=>(x-1)(x+6)=0
=>\(\left[\begin{array}{l}x-1=0\\ x+6=0\end{array}\right.=>\left[\begin{array}{l}x=1\\ x=-6\end{array}\right.\)
chữ xấu quá mình không đọc được
sao chữ nó như con zun nó đag bò ấy nhỉ