K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\frac12xy^2\left(6xy+\frac32x^3y-1\right)\)

\(=\frac12xy^2\cdot6xy+\frac12xy^2\cdot\frac32x^3y-\frac12xy^2\cdot1\)

\(=3x^2y^3+\frac34x^4y^4-\frac12xy^2\)

b: \(\left(2x-\frac12y\right)\left(2x+\frac12y\right)\)

\(=2x\cdot2x-2x\cdot\frac12y+2x\cdot\frac12y-\frac12y\cdot\frac12y\)

\(=4x^2-\frac14y^2\)

c: \(24x^5y^3z^6:6x^4y^2z^3\)

\(=\frac{24}{6}\cdot\left(x^5:x^4\right)\cdot\left(y^3:y^2\right)\cdot\left(z^6:z^3\right)\)

\(=4xyz^3\)

d: \(\left(3x^6y^7z^6+2x^5y^3z^7-6x^5y^3z^8\right):42x^3y^3z^6\)

\(=\frac{3x^6y^7z^6}{42x^3y^3z^6}+\frac{2x^5y^3z^7}{42x^3y^3z^6}-\frac{6x^5y^3z^8}{42x^3y^3z^6}\)

\(=\frac{1}{14}x^3y^4+\frac{1}{21}x^2z-\frac17x^2z^2\)

12 tháng 8

Dễ mà nếu không quá khó thì bạn phải tự làm để có tư duy đi


13 tháng 8

a) Số tiền Linh dùng mua bút bi:

50000 - 20000 = 30000 (đồng)

Giá tiền mỗi bút chì sau khi giảm:

x - 1000 (đồng)

Phân thức biểu thị số bút chì Linh mua được:

loading...

Phân thức biểu thị số bút bi Linh mua được:

loading...

b) Với x = 3000, số bút bi Linh mua được:

30000 : 3000 = 10 (bút)

Bài 1:

a: \(A=x^2-4x+9\)

\(=x^2-4x+4+5\)

\(=\left(x-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 2:

a: \(M=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(P=2x-2x^2-5\)

\(=-2\cdot\left(x^2-x+\frac52\right)\)

\(=-2\left(x^2-x+\frac14+\frac94\right)\)

\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 3:

a: \(A=x^2-4x+24\)

\(=x^2-4x+4+20\)

\(=\left(x-2\right)^2+20\ge20\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=2x^2-8x+1\)

\(=2\left(x^2-4x+\frac12\right)\)

\(=2\left(x^2-4x+4-\frac72\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

c: \(C=3x^2+x-1\)

\(=3\left(x^2+\frac13x-\frac13\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x+\frac16=0\)

=>\(x=-\frac16\)

Bài 4:

a: \(A=-5x^2-4x+1\)

\(=-5\left(x^2+\frac45x-\frac15\right)\)

\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)

\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)

Dấu '=' xảy ra khi \(x+\frac25=0\)

=>\(x=-\frac25\)

b: \(B=-3x^2+x+1\)

\(=-3\left(x^2-\frac13x-\frac13\right)\)

\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x-\frac16=0\)

=>\(x=\frac16\)

Bài 1:

a: \(A=x^2-4x+9\)

\(=x^2-4x+4+5\)

\(=\left(x-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 2:

a: \(M=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(P=2x-2x^2-5\)

\(=-2\cdot\left(x^2-x+\frac52\right)\)

\(=-2\left(x^2-x+\frac14+\frac94\right)\)

\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 3:

a: \(A=x^2-4x+24\)

\(=x^2-4x+4+20\)

\(=\left(x-2\right)^2+20\ge20\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=2x^2-8x+1\)

\(=2\left(x^2-4x+\frac12\right)\)

\(=2\left(x^2-4x+4-\frac72\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

c: \(C=3x^2+x-1\)

\(=3\left(x^2+\frac13x-\frac13\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x+\frac16=0\)

=>\(x=-\frac16\)

Bài 4:

a: \(A=-5x^2-4x+1\)

\(=-5\left(x^2+\frac45x-\frac15\right)\)

\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)

\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)

Dấu '=' xảy ra khi \(x+\frac25=0\)

=>\(x=-\frac25\)

b: \(B=-3x^2+x+1\)

\(=-3\left(x^2-\frac13x-\frac13\right)\)

\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x-\frac16=0\)

=>\(x=\frac16\)

Giúp em với ạ. Em cần gấp ạ. Cảm ơn nhiều ạ.

13 tháng 8

Bài 1:

a; A = \(x^2\) - 4\(x\) + 9

A = \(x^2\) - 4\(x\) + 4 + 5

A = (\(x-2\))\(^2\) + 5

Vì (\(x-2\))\(^2\) ≥ 0 ∀ \(x\) ⇒ (\(x-2\))\(^2\) + 5 ≥ 5 dấu bằng xảy ra khi \(x-2=0\)\(x=2\)

Vậy Amin = 5 khi \(x\) = 2

b; B = \(x^2\) - \(x+1\)

B = (\(x^2\) - 2.\(x\).\(\frac12\) + \(\frac14)+\frac34\)

B = (\(x-\frac12\))\(^2\) + \(\frac34\)

Vì (\(x-\frac12\))\(^2\) ≥ 0 ∀ \(x\); ⇒ (\(x-\frac12\))\(^2\) + \(\frac34\)\(\frac34\)

Dấu = xảy ra khi \(x-\frac12\)= 0 ⇒ \(x\) = \(\frac12\)

Vậy Bmin = \(\frac34\) khi \(x=\frac12\)

13 tháng 8

Bài 3:

a; A(\(x\)) = \(x^2\) - 4\(x\) + 24

A(\(x\)) = (\(x^2\) - 2.\(x.2\) + \(2^2\)) + 20

A(\(x\)) = (\(x-2\))\(^2\) + 20

Vì (\(x-2\))\(^2\) ≥ 0 ∀ \(x\);

(\(x-2)^2\) + 20 ≥ 20 ∀ \(x\)

Dấu bằng xảy ra khi \(x-2=0\)

\(x=2\)

Vậy Amin = 20 khi \(x=2\)

b; B(\(x\)) = 2\(x^2\) - 8\(x\) + 1

B(\(x\)) = 2(\(x^2\) - 2.\(x.2\) + 2\(^2\)) - 7

B(\(x\)) = 2(\(x-2\))\(^2\) - 7

(\(x-2\))\(^2\) ≥ 0 ∀ \(x\);

2(\(x-2)^2\) - 7 ≥ -7 ∀ \(x\)

Dấu = xảy ra khi \(x-2\) = 0

\(x=2\)

Bmin = - 7 khi \(x=2\)

c; C(\(x\)) = \(3x^2+x+1\)

C(\(x\)) = 3.(\(x^2\) + \(2.x\).\(\frac16\) + \(\frac{1}{36}\)) + \(\frac{11}{12}\)

C(\(x\)) = 3.(\(x+\) \(\frac16\))\(^2\) + \(\frac{11}{12}\)

(\(x+\frac16\))\(^2\) ≥ 0; (\(x+\frac16\))\(^2\) + \(\frac{11}{12}\)\(\frac{11}{12}\)

Dấu = xảy ra khi \(x+\frac16=0\)\(x=-\) \(\frac16\)

Cmin = \(\frac{11}{12}\) khi \(x=-\frac16\)

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

Từ đề bài, ta có hình vẽ sau:

\(\hat{BAC}=\hat{BAH}+\hat{CAH}=10^0+10^0=20^0\)

Xét ΔABC có

AH là đường cao

AH là đường phân giác

Do đó: ΔABC cân tại A

=>\(\hat{ABC}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-20^0}{2}=80^0\)

Ta có: \(\hat{KBC}+\hat{KBA}=\hat{ABC}\) (tia BK nằm giữa hai tia BA và BC)

=>\(\hat{KBA}=80^0-40^0=40^0\)

Xét ΔABG và ΔACG có

AB=AC

\(\hat{BAG}=\hat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

=>\(\hat{ABG}=\hat{ACG}\)

=>\(x=40^0\)

a: Xét tứ giác AEDF có \(\hat{AED}=\hat{AFD}=\hat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: AEDF là hình chữ nhật

=>DF//AE và DF=AE

DF//AE

=>GF//AE
Ta có DF=AE

DF=FG

Do đó: GF=AE

Xét tứ giác AEFG có

AE//FG

AE=FG

Do đó: AEFG là hình bình hành

c: AEDF là hình chữ nhật

=>AD cắt EF tại trung điểm của mỗi đường

mà H là trung điểm của AD

nên H là trung điểm của FE

AEDF là hình chữ nhật

=>AD=FE
\(HA=HD=\frac{AD}{2};HF=HE=\frac{EF}{2}\)

nên \(HA=HD=HF=HE=\frac{EF}{2}=\frac{AD}{2}\)

HI=HF

\(HF=HA\)

\(HA=\frac{AD}{2}\)

Do đó: \(IH=\frac{AD}{2}\)

Xét ΔIAD có

IH là đường trung tuyến

\(IH=\frac{AD}{2}\)

Do đó: ΔIAD vuông tại I

=>IA⊥ID