
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


câu c:x^4-2x^3-x^2+x^3-2x^2-x+5x^2-10x-5=x^2(x^2-2x-1)+x(x^2-2x-1)+5(x^2-2x-1)=(x^2-2x-1)(x^2+x+5)

\(1.x^4+6x^3+11x^2+6x+1\)
\(=x^4+6x^3+9x^2+2x^2+6x+1\)
\(=x^4+9x^2+1+6x^3+2x^2+6x\)
\(=\left(x^2\right)^2+\left(3x\right)^2+1^2+2.x^2.3x+2.x^2.1+2.3x.1\)
\(=\left(x^2+3x+1\right)^2\)
\(2,6x^4+5x^3-38x^2+5x+6\)
\(=6x^4+6x^3+2x^3-3x^3-36x^2+2x^2-3x^2-x^2-12x+18x-x+6\)
\(=\left(6x^4+2x^3\right)+\left(6x^3+2x^2\right)-\left(3x^3+x^2\right)-\left(36x^2+12x\right)+\left(18x+6\right)-\left(3x^2+x\right)\)
\(=2x^3\left(3x+1\right)+2x^2\left(3x+1\right)-x^2\left(3x+1\right)-12x\left(3x+1\right)+6\left(3x+1\right)-x\left(3x+1\right)\)
\(=\left(3x+1\right)\left(2x^3+2x^2-x^2-12x+6-x\right)\)
\(=\left(3x+1\right)\left[\left(2x^3-x^2\right)+\left(2x^2-x\right)-\left(12x-6\right)\right]\)
\(=\left(3x+1\right)\left[x^2\left(2x-1\right)+x\left(2x-1\right)-6\left(2x-1\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+x-6\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+3x-2x-6\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\left[\left(x^2+3x\right)-\left(2x+6\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x+3\right)\left(x-2\right)\)
1. \(x^4+6x^3+11x^2+6x+1\)
\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
3. \(x^4-7x^3+14x^2-7x+1\)
\(=x^2\left(x^2-7x+14-\dfrac{7}{x}+\dfrac{1}{x^2}\right)\)
\(=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+14\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-7\left(x+\dfrac{1}{x}\right)+12\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right).\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{1}{4}\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}-\dfrac{7}{2}\right)^2-\dfrac{1}{4}\right]\)
\(=\left(x^2+1-\dfrac{7}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2\)
\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)
Có thể phân tích thành HĐT tiếp hoặc không.

a, \(x^4-6x^3+11x^2-6x+1=0\)
\(\Rightarrow\left(x^2-3x+1\right)^2=0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)
Chúc bạn học tốt
\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)
\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)
\(\left(x^2-3x+1\right)^2=0\)
tự làm
B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)
\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)
\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)
\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)
\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)
câu C nghĩ đã

a, \(x^4-6x^3+11x^2-6x+1=0\)
=> \(x^4-6x^3+9x^2+2x^2-6x+1=0\)
=> \(x^2+3x+1=0\)
=> \(\Delta\) =\(b^2-4c\)
=\(3^2.4=5\)
Nên \(\sqrt{\Delta}=5\)
x= \(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{5}}{2}\)
hoặc x= \(\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{5}}{2}\)

a, \(x^4+6x^3+7x^2-6x+1\)
\(=x^4-2x^2+1+6x^3+9x^2+6x\)
\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)
\(=\left(x^2-1+3x\right)^2\)
b, \(x^4-7x^3+14x^2-7x+1\)
\(=x^4+2x^2+1+7x^3+12x^2-7x\)
\(=\left(x^2+1\right)^2-7x\left(x^2+1\right)+12^2\)
\(=\left(x^2-1+3x\right)^2\)
c, \(12x^2-11x-36\)
\(=12x^2-27x+16x-36\)
\(=3x\left(4x-9\right)+4\left(4x-9\right)\)
\(=\left(4x-9\right)\left(3x+4\right)\)


\(B=x^4-6x^3+11x^2-6x+1\)
\(=x^4-6x^3+9x^2+2x^2-6x+1\)
\(=\left(x^2\right)^2-2.x^2.3x+\left(3x\right)^2+2\left(x^2-3x\right)+1\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right).1+1^2\)
\(=\left(x^2-3x+1\right)^2\)

a)
\(x^3+6x^2+11x+6=(x^3-x)+(6x^2+12x+6)\)
\(=x(x^2-1)+5(x^2+2x+1)\)
\(=x(x-1)(x+1)+6(x+1)^2\)
\(=(x+1)[x(x-1)+6(x+1)]=(x+1)(x^2+5x+6)\)
\(=(x+1)(x^2+2x+3x+6)\)
\(=(x+1)[x(x+2)+3(x+2)]=(x+1)(x+2)(x+3)\)
b) \(x^3+6x^2-13x-42\)
\(=x^3+2x^2+4x^2+8x-21x-42\)
\(=x^2(x+2)+4x(x+2)-21(x+2)\)
\(=(x+2)(x^2+4x-21)\)
\(=(x+2)[x^2-3x+7x-21)\)
\(=(x+2)(x+7)(x-3)\)
c)
\(x^3-5x^2+8x-4=(x^3-x^2)-4x^2+8x-4\)
\(=x^2(x-1)-4(x^2-2x+1)\)
\(=x^2(x-1)-4(x-1)^2\)
\(=(x-1)[x^2-4(x-1)]=(x-1)(x^2-4x+4)\)
\(=(x-1)(x-2)^2\)
d) \(2x^3-x^2+3x+6\)
\(=2x^3+2x^2-3x^2+3x+6\)
\(=2x^2(x+1)-3(x^2-x-2)\)
\(=2x^2(x+1)-3[x^2+x-2x-2]\)
\(=2x^2(x+1)-3[x(x+1)-2(x+1)]\)
\(=2x^2(x+1)-3(x+1)(x-2)\)
\(=(x+1)(2x^2-3x+6)\)
Bạn đưa ra biểu thức x^4 - 6x^3 + 11x^2 - 6x + 1, mình đoán là bạn muốn phân tích hoặc tính giá trị.
Mình thử phân tích thành nhân tử nhé.
x^4 - 6x^3 + 11x^2 - 6x + 1
Ta nhóm đối xứng:
x^4 + 1 - 6x^3 - 6x + 11x^2
Nhưng cách này không ra đẹp ngay, mình thử nhận dạng: hệ số đối xứng (1, -6, 11, -6, 1) → đây là đa thức đối xứng bậc 4.
Đa thức đối xứng bậc 4 dạng: x^4 + ax^3 + bx^2 + ax + 1 có thể đặt t = x + 1/x.
Chia cả hai vế cho x^2:
x^2 + 1/x^2 - 6(x + 1/x) + 11 - 6/x + 1/x^2 … để gọn hơn ta làm chuẩn:
x^4 - 6x^3 + 11x^2 - 6x + 1
= (x^2 + 1/x^2) + 11 - 6(x + 1/x)
Ta biết x^2 + 1/x^2 = (x + 1/x)^2 - 2.
Đặt t = x + 1/x thì:
Biểu thức = t^2 - 2 - 6t + 11 = t^2 - 6t + 9 = (t - 3)^2.
Vậy:
x^4 - 6x^3 + 11x^2 - 6x + 1 = (x + 1/x - 3)^2.
Nhân gọn:
= [(x^2 - 3x + 1)/x]^2
Nếu cần nghiệm: x^2 - 3x + 1 = 0 → x = (3 ± √5)/2, mỗi nghiệm lặp bội 2.
Cho mình xin 1 tick với ạ
\(x^4-6x^3+11x^2-6x+1\)
\(=x^4-3x^3+x^2-3x^3+9x^2-3x+x^2-3x+1\)
\(=x^2\left(x^2-3x+1\right)-3x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)
\(=\left(x^2-3x+1\right)\left(x^2-3x+1\right)=\left(x^2-3x+1\right)^2\)