K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 7:

a: xét tứ giác ABCP có

O là trung điểm chung của AC và BP

=>ABCP là hình bình hành

b: ABCP là hình bình hành

=>BA//CP và BA=CP

Ta có: BA//CP

=>BA//CK

ta có: BA=CP

CP=CK

Do đó: BA=CK

Xét tứ giác ABKC có

AB//KC

AB=KC

Do đó: ABKC là hình bình hành

=>BK=AC

c: Xét ΔABC có

O là trung điểm của CA

OM//AB

Do đó: M là trung điểm của BC

ABKC là hình bình hành

=>AK cắt BC tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của AK

=>A,M,K thẳng hàng

Bài 6:

a: Xét tứ giác ABKC có

M là trung điểm chung của AK và BC

=>ABKC là hình bình hành

b: Xét tứ giác AHCI có

E là trung điểm chung của AC và HI

=>AHCI là hình bình hành

c: ABKC là hình bình hành

=>CK//AB

Ta có: AHCI là hình bình hành

=>CH//AI

mà I∈AB

nên CH//AB

Ta có: CK//AB

CH//AB

mà HC,KC có điểm chung là C

nên C,H,K thẳng hàng

9 tháng 8

:(}



a: \(x^2+8x+16=x^2+2\cdot x\cdot4+4^2=\left(x+4\right)^2\)

b: \(9x^2-24x+16=\left(3x\right)^2-2\cdot3x\cdot4+4^2=\left(3x-4\right)^2\)

c: \(x^2-3x+\frac94=x^2-2\cdot x\cdot\frac32+\left(\frac32\right)^2=\left(x-\frac32\right)^2\)

d: \(4x^2y^4-4xy^3+y^2\)

\(=\left(2xy^2\right)^2-2\cdot2xy^2\cdot y+y^2\)

\(=\left(2xy^2-y\right)^2\)

e: \(\left(x-2y\right)^2-4\left(x-2y\right)+4\)

\(=\left(x-2y\right)^2-2\cdot\left(x-2y\right)\cdot2+2^2\)

\(=\left(x-2y-2\right)^2\)

f: \(\left(x+3y\right)^2-12xy\)

\(=x^2+6xy+9y^2-12xy\)

\(=x^2-6xy+9y^2=\left(x-3y\right)^2\)

a: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

b: Xét ΔBHF vuông tại H và ΔBHA vuông tại H có

BH chung

HF=HA

Do đó: ΔBHF=ΔBHA

=>BF=BA

mà BA=CE

nên BF=CE

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

Bài 8:

\(\left(2n+3\right)^2-\left(2n-1\right)^2\)

\(=\left(2n+3+2n-1\right)\left(2n+3-2n+1\right)\)

\(=4\cdot\left(4n+2\right)=4\cdot2\cdot\left(2n+1\right)=8\left(2n+1\right)\) ⋮8

Bai 7:

\(B=x^2+y^2=\left(x+y\right)^2-2xy\)

\(=15^2-2\cdot\left(-100\right)=225+200=425\)

Bài 6:

\(B=\left(3x-1\right)^2-\left(x+7\right)^2-2\left(2x-5\right)\left(2x+5\right)\)

\(=9x^2-6x+1-\left(x^2+14x+49\right)-2\left(4x^2-25\right)\)

\(=9x^2-6x+1-x^2-14x-49-8x^2+50\)

=-20x+2

Khi x=1/5 thì \(B=-20\cdot\frac15+2=-4+2=-2\)

Bài 3:

a: \(x^2-10x+25=\left(x-5\right)^2\)

b: \(4-4x^2+x^4=\left(2-x^2\right)^2\)

c: \(x^2-6xy+9y^2=\left(x-3y\right)^2\)

d: \(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)


Bài 13:

a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)

\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)

\(=\left(x-2y\right)^2\)

b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)

\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)

\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)

=5(a-b)+2

c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)

\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)

\(=x^2-2xy+4y^2\)

Bài 11:

a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2

Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)

=>\(\left(a+1\right)\left(a+2-a\right)=52\)

=>2(a+1)=52

=>a+1=26

=>a=25

Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27

b: a chia 5 dư 1 nên a=5x+1

b chia 5 dư 4 nên b=5y+4

ab+1

\(=\left(5x+1\right)\left(5y+4\right)+1\)

=25xy+20x+5y+4+1

=25xy+20x+5y+5

=5(5xy+4x+y+1)⋮5

c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

=6n⋮6

Bài 8:

a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)

\(=x^2+2xy+y^3\)

Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)

b: x=-1;y=-1

=>xy=1

\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)

=>B=1-1+1-1+1=1

12 tháng 8

S
31 tháng 8

bài 1:

\(a.x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)

\(b.x^3-\frac{1}{27}=\left(x-\frac13\right)\left(x^2+\frac13x+\frac19\right)\)

\(c.x^3-27y^3=\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(d.27x^3+8y^3=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)

bài 2:

\(a.A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)

\(=x^3+8-x^3+2=10\)

\(b.B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x^3-1\right)-\left(x^3+1\right)=-2\)

\(c.C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)

\(=\left(8x^3-y^3\right)+\left(y^3-27x^3\right)=-19x^3\)

bài 3:

\(a.A=\left(x-5\right)\left(x^2+5x+25\right)=x^3-125\)

thay x = 6 vào A ta được:

\(6^3-125=216-125=91\)

\(b.B=\left(3x-2\right)\left(9x^2+6x+4\right)=27x^3-8\)

thay x = 10/3 vào B ta được:

\(27\cdot\left(\frac{10}{3}\right)^3-8=992\)

\(c.C=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)

thay x = 5; y = 5/3 vào C ta được

\(8\cdot5^3-27\cdot\left(\frac53\right)^3=875\)

S
31 tháng 8

bài 4:

\(a.\left(2x-5\right)\left(4x^2+10x+25\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=\left(2x-5\right)\left\lbrack\left(2x\right)^2+\left(2x\right)\cdot5+5^2\right\rbrack-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=\left(2x\right)^3-5^3-\left(x^3+3^3\right)\)

\(=8x^3-125-\left(x^3+27\right)=7x^3-152\)

\(b.\left(2y-1\right)\left(4y^2+2y+1\right)+\left(3-y\right)\left(9+3y+y^2\right)+y\left(2-7y^2\right)\)

\(=\left(2y-1\right)\left\lbrack\left(2y\right)^2+\left(2y\right)\cdot1+1^2\right\rbrack+\left(3-y\right)\left(3^2+3y+y^2\right)+2y-7y^3\)

\(=\left(2y\right)^3-1^3+\left(3^3-y^3\right)+2y-7y^3\)

\(=8y^3-1+27-y^3+2y-7y^3=2y+26\)

bài 5:

\(a.A=\left(x+1\right)\left(x^2-x+1\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=\left(x^3+1\right)-\left(x^3+27\right)=-26\)

\(b.B=\left(y+2\right)\left(y^2-2y+4\right)+\left(5-y\right)\left(25+5y+y^2\right)\)

\(=\left(y^3+8\right)+\left(125-y^3\right)=133\)

\(c.C=4\cdot\left(x^3-8\right)-4\cdot\left(x+2\right)\left(x^2-2x+4\right)\)

\(=4\cdot\left(x^3-2^3\right)-4\cdot\left(x^3+2^3\right)\)

\(=4x^3-32-4x^3-32=-64\)

\(d.D=\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-2y\right)\left(x^2+2xy+4y^2\right)-8\cdot\left(2y^3+1\right)\)

\(=\left(x^3+8y^3\right)-\left(x^3-8y^3\right)-8\cdot\left(2y^3+1\right)=16y^3-16y^3-8=-8\)

a: Xét tứ giác AEDF có \(\hat{AED}=\hat{AFD}=\hat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: AEDF là hình chữ nhật

=>DF//AE và DF=AE

DF//AE

=>GF//AE
Ta có DF=AE

DF=FG

Do đó: GF=AE

Xét tứ giác AEFG có

AE//FG

AE=FG

Do đó: AEFG là hình bình hành

c: AEDF là hình chữ nhật

=>AD cắt EF tại trung điểm của mỗi đường

mà H là trung điểm của AD

nên H là trung điểm của FE

AEDF là hình chữ nhật

=>AD=FE
\(HA=HD=\frac{AD}{2};HF=HE=\frac{EF}{2}\)

nên \(HA=HD=HF=HE=\frac{EF}{2}=\frac{AD}{2}\)

HI=HF

\(HF=HA\)

\(HA=\frac{AD}{2}\)

Do đó: \(IH=\frac{AD}{2}\)

Xét ΔIAD có

IH là đường trung tuyến

\(IH=\frac{AD}{2}\)

Do đó: ΔIAD vuông tại I

=>IA⊥ID

13 tháng 8

a) Số tiền Linh dùng mua bút bi:

50000 - 20000 = 30000 (đồng)

Giá tiền mỗi bút chì sau khi giảm:

x - 1000 (đồng)

Phân thức biểu thị số bút chì Linh mua được:

loading...

Phân thức biểu thị số bút bi Linh mua được:

loading...

b) Với x = 3000, số bút bi Linh mua được:

30000 : 3000 = 10 (bút)

Bài 1:

a: \(A=x^2-4x+9\)

\(=x^2-4x+4+5\)

\(=\left(x-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 2:

a: \(M=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(P=2x-2x^2-5\)

\(=-2\cdot\left(x^2-x+\frac52\right)\)

\(=-2\left(x^2-x+\frac14+\frac94\right)\)

\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 3:

a: \(A=x^2-4x+24\)

\(=x^2-4x+4+20\)

\(=\left(x-2\right)^2+20\ge20\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=2x^2-8x+1\)

\(=2\left(x^2-4x+\frac12\right)\)

\(=2\left(x^2-4x+4-\frac72\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

c: \(C=3x^2+x-1\)

\(=3\left(x^2+\frac13x-\frac13\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x+\frac16=0\)

=>\(x=-\frac16\)

Bài 4:

a: \(A=-5x^2-4x+1\)

\(=-5\left(x^2+\frac45x-\frac15\right)\)

\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)

\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)

Dấu '=' xảy ra khi \(x+\frac25=0\)

=>\(x=-\frac25\)

b: \(B=-3x^2+x+1\)

\(=-3\left(x^2-\frac13x-\frac13\right)\)

\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x-\frac16=0\)

=>\(x=\frac16\)