K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Qua O, kẻ tia OA//MN sao chi tia OA nằm giữa hai tia OM và OP

OA//MN

=>\(\hat{AOM}=\hat{OMN}\) (hai góc so le trong)

=>\(\hat{AOM}=60^0\)

Ta có: tia OA nằm giữa hai tia OM và OP

=>\(\hat{AOM}+\hat{AOP}=\hat{MOP}\)

=>\(\hat{AOP}=130^0-60^0=70^0\)

Để MN//PQ thì OA//PQ

=>\(\hat{AOP}=\hat{OPQ}\) (hai góc so le trong)

=>\(\hat{OPQ}=70^0\)

Bài 8:

Chu vi đáy là:

3,5+3,5+3+6=7+9=16(cm)

Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)

Bài 9:

Diện tích đáy là:

\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)

Thể tích của khối bê tông là:

\(84\cdot22=1848\left(m^3\right)\)

Số tiền phải trả là:

\(1848\cdot2500000=4620000000\) (đồng)

Cách 1: ta có: \(\hat{yAB}+\hat{y^{\prime}AB}=180^0\) (hai góc kề bù)

=>\(\hat{y^{\prime}AB}=180^0-105^0=75^0\)

ta có: \(\hat{y^{\prime}AB}=\hat{x^{\prime}Bz}\left(=75^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên Ay//Bz

=>yy'//Bz

Cách 2:

Ta có: \(\hat{x^{\prime}Bz}+\hat{xBz}=180^0\) (hai góc kề bù)

=>\(\hat{xBz}=180^0-75^0=105^0\)

Ta có: \(\hat{xBz}=\hat{yAB}\left(=105^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ay//Bz

=>yy'//Bz

a:

b: b và c song song với nhau

\(\frac{x}{10}=\frac{y}{5}\)

=>\(\frac{x}{2}=\frac{y}{1}\)

=>\(\frac{x}{4}=\frac{y}{2}\)

\(\frac{y}{2}=\frac{z}{3}\)

nên \(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)

mà 2x-3y+4z=350

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+4z}{2\cdot4-3\cdot2+4\cdot3}=\frac{350}{14}=25\)

=>\(\begin{cases}x=25\cdot4=100\\ y=25\cdot2=50\\ z=25\cdot3=75\end{cases}\)

Ta có: \(x+120^0=180^0\) (hai góc kề bù)

=>\(x=180^0-120^0=60^0\)

Ta có: x=y (hai góc đối đỉnh)

\(x=60^0\)

nên \(y=60^0\)

Ta có: \(z+60^0=180^0\) (hai góc kề bù)

=>\(z=180^0-60^0=120^0\)

13 tháng 8

x = 60\(^0\) (hai góc đồng vị)

x = y = 60\(^0\) (hai góc đối đỉnh)

z = 120\(^0\) (slt)

t = 60\(^0\) (hai góc đối đỉnh)



1: Các cặp góc so le trong là \(\hat{A_4};\hat{B_2}\) ; \(\hat{A_3};\hat{B_1}\)

Các cặp góc đồng vị là \(\hat{A_1};\hat{B_1}\) ; \(\hat{A_2};\hat{B_2}\) ; \(\hat{A_4};\hat{B_4}\) ; \(\hat{A_3};\hat{B_3}\)

Các cặp góc trong cùng phía là: \(\hat{A_4};\hat{B_1}\) ; \(\hat{A_3};\hat{B_2}\)

2: Ta có: \(\hat{A_2}+\hat{A_3}=180^0\) (hai góc kề bù)

=>\(\hat{A_3}=180^0-60^0=120^0\)

Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)

\(\hat{A_2}=60^0\)

nên \(\hat{A_4}=60^0\)

Ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)

\(\hat{A_3}=120^0\)

nên \(\hat{A_1}=120^0\)

Ta có: \(\hat{B_2}+\hat{B_3}=180^0\) (hai góc kề bù)

=>\(\hat{B_3}=180^0-60^0=120^0\)

ta có: \(\hat{B_1}=\hat{B_3}\) (hai góc đối đỉnh)

\(\hat{B_3}=120^0\)

nên \(\hat{B_1}=120^0\)

ta có: \(\hat{B_2}=\hat{B_4}\) (hai góc đối đỉnh)

\(\hat{B_2}=60^0\)

nên \(\hat{B_4}=60^0\)

14 tháng 8

Bài giải:

Số tiền mỗi đơn vị đóng góp tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách, nên hệ số tỉ lệ của từng đơn vị là:

  • Đơn vị 1: \(\frac{8}{1 , 5} = 5,33\)
  • Đơn vị 2: \(\frac{5}{3} \approx 1,67\)
  • Đơn vị 3: \(\frac{4}{1} = 4\)

Tổng hệ số: \(5,33 + 1,67 + 4 = 11\).

Vì tổng chi phí là \(340\) triệu đồng, mỗi đơn vị hệ số 1 sẽ trả \(\frac{340}{11} \approx 30,94\) triệu đồng.

Vậy:

  • Đơn vị 1 trả: \(5,33 \times 30,94 \approx 164,85\) triệu đồng
  • Đơn vị 2 trả: \(1,67 \times 30,94 \approx 51,52\) triệu đồng
  • Đơn vị 3 trả: \(4 \times 30,94 \approx 123,64\) triệu đồng.