Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Gọi E' là điểm đối xứng với E qua A.
Khi đó ta thấy ngay MA là đường trung bình của tam giác EE'H
Vậy nên MA // HE'.
Kéo dài MA, cắt BC tại K.
Ta thấy rằng \(\widehat{BAC}=\widehat{E'AH}\) (Cùng phụ với góc CAE')
Vậy nên ta có ngay \(\Delta ABC=\Delta AE'H\left(c-g-c\right)\Rightarrow\widehat{AE'H}=\widehat{ABC}\)
Lại có \(\widehat{AE'H}=\widehat{E'AK}\) (Hai góc so le trong)
\(\widehat{E'AK}=\widehat{MAE}\) (Hai góc đổi đỉnh)
Vậy nên \(\widehat{ABC}=\widehat{MAE}\)
Suy ra \(\widehat{ABK}+\widehat{BAK}=\widehat{MAE}+\widehat{BAK}=180^o-\widehat{EAB}=90^o\)
Xét tam giác ABK có \(\widehat{ABK}+\widehat{BAK}=90^o\) nên \(\widehat{AKB}=90^o\Rightarrow MA\perp BC\left(đpcm\right)\)
b) +) Ta có \(MA\perp BC;ON\perp BC\Rightarrow\) MA // ON.
Chứng minh tương tự ta cũng có \(NA\perp EH\)
Khi OE = OH thì tam giác OEH cân tại O, suy ra OM là trung tuyến đồng thời đường cao. Vậy \(OM\perp EH\Rightarrow\) OM // NA
Vậy thì AMON là hình bình hành.
+) Ta có AMON là hình bình hành nên AM = ON.
Lại có \(AM=\dfrac{HE'}{2}=\dfrac{BC}{2}=BN=NC\)
Nên \(NO=NB=NC\Rightarrow\widehat{BOC}=90^o\)
Vậy thì \(\widehat{B_1}=\widehat{C_1}=45^o\)
Ta có \(\widehat{BAC}+\widehat{B_2}+\widehat{B_1}+\widehat{C_2}+\widehat{C_1}=180^o\)
Mà do OA = OB = OC nên \(\widehat{B_2}=\widehat{BAO};\widehat{C_2}=\widehat{OAC}\Rightarrow\widehat{B_2}+\widehat{C_2}=\widehat{BAC}\)
Suy ra \(2\widehat{BAC}=90^o\Rightarrow\widehat{BAC}=45^o\)

Cho tam giác ABC vuông tại a . Điểm M bất kì trên AC . Kẻ CH vuông góc với tia BM tại H và tia BA tại O. Gọi I là trung điểm của BC . Qua M kẻ đường thẳng vuông góc với MI , cắt OB và OC thứ tự tại P và Q . Chứng minh M là trung điểm của PQ

a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm
Trường hợp a:
Vì OB = OC nên tam giác BOC cân tại O, suy ra góc OBC = góc OCB
Ta xét tam giác ABC có góc BAC nhọn, điểm O nằm cùng phía với A đối với BC và góc BOC = 2 góc BAC
Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC. Khi đó:
– O cách đều các đỉnh của tam giác nên OA = OB = OC
– Mặt khác, trong đường tròn ngoại tiếp tam giác ABC thì góc ở tâm BOC chắn cung BC, còn góc nội tiếp BAC cũng chắn cung BC
Do đó ta có: góc BOC = 2 góc BAC
Điều này đúng với giả thiết
Vậy O là tâm đường tròn ngoại tiếp tam giác ABC nên OA = OB = OC
Trường hợp b:
Vì OB = OC nên tam giác BOC cân tại O, suy ra góc OBC = góc OCB
Ta xét tam giác ABC có góc BAC là góc tù, tức lớn hơn 90 độ, và điểm O nằm khác phía với A so với BC
Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC. Khi đó:
– O cách đều các đỉnh của tam giác nên OA = OB = OC
– Trong đường tròn, góc nội tiếp BAC chắn cung lớn BC, còn góc ở tâm BOC chắn cung nhỏ BC
Do đó ta có: góc BOC = 360° – 2 góc BAC
Điều này đúng với giả thiết
Vậy O là tâm đường tròn ngoại tiếp tam giác ABC nên OA = OB = OC
Kết luận: trong cả hai trường hợp, ta đều có OA = OB = OC
TICK VS A