
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét (HA/2) có
ΔAEH nội tiếp
AH là đường kính
Do đó: ΔAEH vuông tại E
=>HE⊥AB tại E
Xét (HA/2) có
ΔAFH nội tiếp
AH là đường kính
Do đó: ΔAFH vuông tại F
=>HF⊥AC tại F
Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC=AH^2\)
Ta có: \(AE\cdot AB=AF\cdot AC\)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\frac{AE}{AC}=\frac{AF}{AB}\)
Do đó: ΔAEF~ΔACB
b: Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(\hat{AFE}=\hat{AHE}\)
mà \(\hat{AHE}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)
nên \(\hat{AFE}=\hat{ABC}\)
ΔOAC cân tại O
=>\(\hat{OAC}=\hat{OCA}=\hat{ACB}\)
\(\hat{AFE}+\hat{OAC}=\hat{ABC}+\hat{ACB}=90^0\)
=>AO⊥ FE
c: Xét (O) có
ΔAKH nội tiếp
AH là đường kính
Do đó: ΔAKH vuông tại K
=>HK⊥AT tại K
Xét ΔAHT vuông tại H có HK là đường cao
nên \(AK\cdot AT=AH^2\)
=>\(AK\cdot AT=AE\cdot AB\)
=>\(\frac{AK}{AE}=\frac{AB}{AT}\)
Xét ΔAKB và ΔAET có
\(\frac{AK}{AE}=\frac{AB}{AT}\)
góc KAB chung
Do đó: ΔAKB~ΔAET
=>\(\hat{AKB}=\hat{AET}\)
d: ta có: A,C,B,K cùng thuộc (O)
=>ACBK nội tiếp
=>\(\hat{ACB}+\hat{AKB}=180^0\)
mà \(\hat{AKB}+\hat{AKI}=180^0\) (hai góc kề bù)
nên \(\hat{IKA}=\hat{ICB}\)
Xét ΔIKA và ΔICB có
\(\hat{IKA}=\hat{ICB}\)
góc KIA chung
Do đó: ΔIKA~ΔICB

Gọi H là trực tâm của ΔABC
=>BH⊥AC; CH⊥AB; AH⊥BC
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD⊥BA
mà CH⊥AB
nên CH//BD
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CA⊥CD
mà BH⊥CA
nên BH//CD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà X là trung điểm của BC
nên X là trung điểm của DH
=>DX đi qua H(1)
Xét (O) có
ΔBCE nội tiếp
BE là đường kính
Do đó: ΔBCE vuông tại C
=>CB⊥CE
mà AH⊥CB
nên AH//CE
Xét (O) có
ΔEAB nội tiếp
BE là đường kính
Do đó: ΔBAE vuông tại A
=>AE⊥AB
mà CH⊥AB
nên AE//CH
Xét tứ giác AHCE có
AH//CE
AE//CH
Do đó: AHCE là hình bình hành
=>AC cắt HE tại trung điểm của mỗi đường
mà Y là trung điểm của AC
nên Y là trung điểm của EH
=>EY đi qua H(2)
Xét (O) có
ΔFAC nội tiếp
FC là đường kính
Do đó: ΔFAC vuông tại A
=>AF⊥ AC
mà BH⊥AC
nên AF//BH
Xét (O) có
ΔFBC nội tiếp
FC là đường kính
Do đó: ΔFBC vuông tại B
=>BF⊥BC
mà AH⊥BC
nên AH//BF
Xét tứ giác AHBF có
AH//BF
AF//BH
Do đó: AHBF là hình bình hành
=>AB cắt HF tại trung điểm của mỗi đường
mà Z là trung điểm của AB
nên Z là trung điểm của FH
=>FZ đi qua H(3)
Từ (1),(2),(3) suy ra DX,EY,FZ đồng quy tại H

Gọi \(\angle A O C = \alpha\). Đây là góc ở tâm chắn cung \(A C\)
Quan sát hình: cung \(B D\) gồm 3 lần liên tiếp cung \(A C\) (từ B → C, C → A, A → D)
Góc ở tâm \(\angle B O D\) chắn cung \(B D\) nên:
\(\angle B O D = 3 \times \angle A O C .\)
Vậy \(\angle B O D = 3 \angle A O C\)

a: Xét (O) có
AD,BC là các dây không song song
AB//CD
Do đó: sđ cung AD=sđ cung BC
b: Ta có: ABCD là tứ giác nội tiếp
=>\(\hat{ADC}+\hat{ABC}=180^0\)
mà \(\hat{ABC}+\hat{BCD}=180^0\) (hai góc trong cùng phía, AB//CD)
nên \(\hat{ADC}=\hat{BCD}\)
Hình thang ABCD có \(\hat{ADC}=\hat{BCD}\)
nên ABCD là hình thang cân

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.
a: Kẻ OI⊥CD tại I
ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
=>IC=ID
ΔOMN cân tại O
mà OI là đường cao
nên I là trung điểm của MN
=>IM=IN
Ta có: IM+MC=IC
IN+ND=ID
mà IM=IN và IC=ID
nên MC=ND
b: ΔOMN vuông tại O có OM=ON
nên ΔOMN vuông cân tại O
=>\(MN^2=OM^2+ON^2=2\cdot OM^2\)
=>\(MN=OM\cdot\sqrt2\)
Vì CM=MN=ND
nên \(CM=MN=ND=\frac{CD}{3}\)
=>\(CD=3\cdot MN=3\sqrt2\cdot OM\)
I là trung điểm của CD
=>\(IC=\frac{CD}{2}=\frac{3\sqrt2}{2}\cdot OM\)
ΔOMN vuông cân tại O
=>\(\hat{OMI}=45^0\)
Xét ΔOMI vuông tại I có \(\hat{OMI}=45^0\)
nên ΔOMI vuông cân tại I
=>\(IM=IO\)
ΔOMI vuông tại I
=>\(IM^2+IO^2=OM^2\)
=>\(OM^2=2\cdot IO^2\)
=>\(IO^2=\frac{OM^2}{2}\)
ΔOIC vuông tại I
=>\(OI^2+IC^2=OC^2\)
=>\(OI^2=OC^2-IC^2=R^2-\left(\frac{3\sqrt2}{2}\cdot OM\right)^2=R^2-OM^2\cdot\frac92\)
=>\(\frac{OM^2}{2}+\frac92\cdot OM^2=R^2\)
=>\(R^2=5\cdot OM^2\)
=>\(OM^2=\frac{R^2}{5}\)
=>\(OM=\frac{R\sqrt5}{5}\)

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.
Gọi \(S=a+b;P=ab\). Khi đó theo đề bài, ta có: \(2025S=P\), lại có \(a,b\ge2025\rArr S\ge5050\)
Mặt khác, theo định lý Vi-ét đảo, ta có \(a,b\) là 2 nghiệm của phương trình \(x^2-Sx+P=0\) hay \(x^2-Sx+2025S=0\)
\(\lrArr x^2=S\left(x-2025\right)\)
\(\rArr x-2025=\frac{x^2}{S}\) (1) (Do S chắc chắn khác 0 nên ta mới chia được như thế này)
Như vậy, vì \(a,b\) là nghiệm của (1) nên \(a-2025=\frac{a^2}{S};b-2025=\frac{b^2}{S}\)
\(\rArr P=\sqrt{a-2025}+\sqrt{b-2025}-\frac{1}{45}\sqrt{ab}\)
\(P=\sqrt{\frac{a^2}{S}}+\sqrt{\frac{b^2}{S}}-\frac{1}{45}\sqrt{2025S}\)
\(P=\frac{a}{\sqrt{S}}+\frac{b}{\sqrt{S}}-\sqrt{S}\) (vì \(\frac{1}{45}\sqrt{2025}=1\), đồng thời a, b dương nên ta mới bỏ được dấu căn)
\(P=\frac{a+b}{\sqrt{S}}-\sqrt{S}\)
\(P=\frac{S}{\sqrt{S}}-\sqrt{S}\)
\(P=\sqrt{S}-\sqrt{S}\)
\(P=0\)
Vậy \(P=0\)