
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Rút gọn phân số:
a) \(-\frac{11}{43}=-\frac{11}{43}\) (phân số này tối giản rồi cần gì rút gọn nữa bạn).
b) \(\frac{17.5-17}{3-20}=\frac{68}{-17}=\frac{-68}{17}=-4.\)
c) \(\frac{3.21}{14.15}=\frac{63}{210}=\frac{3}{10}.\)
d) \(\frac{3.4+3.11}{3-13}=\frac{45}{-10}=\frac{-45}{10}=-\frac{9}{2}.\)
Chúc bạn học tốt!

a/
Theo đề,ta có:
+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)
Từ (1) và (2), ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)
Do đó:
+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)
+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)
+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)
Vậy: + \(x=-\dfrac{224}{19}\)
+ \(y=-\dfrac{336}{19}\)
+ \(z=-\dfrac{420}{19}\)
a,x2=y3,y4=z5x2=y3,y4=z5và x-y-z=28
Có \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)
=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất DTSBN có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)
=> x=\(\dfrac{-224}{19}\)
y=\(\dfrac{-336}{19}\)
z=\(\dfrac{-420}{19}\)

\(\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
Vậy \(x\in\left\{\pm7\right\}\)

\(\Rightarrow\dfrac{1}{3}\left(x-\dfrac{3}{2}\right)+\dfrac{1}{2}\left(2x+1\right)=\dfrac{-13}{3}\)
\(\Rightarrow\dfrac{1}{3}x-\dfrac{1}{2}+x+\dfrac{1}{2}=\dfrac{-13}{3}\)
\(\Rightarrow\dfrac{4}{3}x=\dfrac{-13}{3}\Rightarrow x=\dfrac{-13}{4}\)

a) \(-6.\left(-\frac{2}{3}\right).0,25\)
\(=-6.\left(-\frac{2}{3}\right).\frac{1}{4}\)
\(=4.\frac{1}{4}\)
\(=1.\)
b) \(-\frac{15}{4}.\left(-\frac{7}{15}\right).\left(-2\frac{2}{5}\right)\)
\(=-\frac{15}{4}.\left(-\frac{7}{15}\right).\left(-\frac{12}{5}\right)\)
\(=\frac{7}{4}.\left(-\frac{12}{5}\right)\)
\(=-\frac{21}{5}.\)
c) \(\left(-0,4\right)^2-\left(-0,4\right)^3.\left(-3\right)\)
\(=0,16-\left(-0,064\right).\left(-3\right)\)
\(=0,16-0,192\)
\(=-0,032.\)
Chúc bạn học tốt!

b: \(\sqrt{8^2+6^2}-\sqrt{16}+\dfrac{1}{2}\sqrt{\dfrac{4}{25}}\)
\(=10-4+\dfrac{1}{2}\cdot\dfrac{2}{5}=6+\dfrac{1}{5}=\dfrac{31}{5}\)

\(\left(\dfrac{1}{3}\right)^{50}.\left(-9\right)^{25}-\dfrac{2}{3}:4\)
=\(\left(\dfrac{1}{9}\right)^{25}.\left(-9\right)^{25}-\dfrac{1}{6}\)
=\(\left[\dfrac{1}{9}.\left(-9\right)\right]^{25}-\dfrac{1}{6}\)
= \(\left(-1\right)^{25}-\dfrac{1}{6}\)
= \(-1-\dfrac{1}{6}=\dfrac{-7}{6}\)
\(\left(\dfrac{1}{3}\right)^{50}\cdot\left(-9\right)^{25}-\dfrac{2}{3}:4\)
\(=\left[\left(\dfrac{1}{3}\right)^2\right]^{25}\cdot\left(-9\right)^{25}-\dfrac{1}{6}\)
\(=\left(\dfrac{1}{9}\right)^{25}\cdot\left(-9\right)^{25}-\dfrac{1}{6}\)
\(=\left[\dfrac{1}{9}\cdot\left(-9\right)\right]^{25}-\dfrac{1}{6}\)
\(=\left(-1\right)^{25}-\dfrac{1}{6}=-1-\dfrac{1}{6}=-\dfrac{7}{6}\)

1) \(\left|x\right|=7\)
=> \(\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
Vậy \(x\in\left\{7;-7\right\}.\)
2) \(\left|x\right|=0\)
=> \(x=0\)
Vậy \(x\in\left\{0\right\}.\)
5) \(\left|x\right|-1=\frac{2}{5}\)
=> \(\left|x\right|=\frac{2}{5}+1\)
=> \(\left|x\right|=\frac{7}{5}\)
=> \(\left[{}\begin{matrix}x=\frac{7}{5}\\x=-\frac{7}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{7}{5};-\frac{7}{5}\right\}.\)
8) \(\left|x-17\right|=23\)
=> \(\left[{}\begin{matrix}x-17=23\\x-17=-23\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=23+17\\x=\left(-23\right)+17\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=40\\x=-6\end{matrix}\right.\)
Vậy \(x\in\left\{40;-6\right\}.\)
Mình chỉ làm thế thôi nhé, bạn đăng hơi nhiều mà với cả mấy câu này dễ mà bạn.
Chúc bạn học tốt!
1) |x|=7
=> [x=7x=−7 =>[x=7x=−7
Vậy x∈{7;−7}.x∈{7;−7}.
2) |x|=0
=> x=0x=0
Vậy x∈{0}.x∈{0}.
5) |x|−1=25
=> |x|=25+1 =>|x|=25+1
=> |x|=75|x|=75
=> [x=75x=−75[x=75x=−75
Vậy x∈{75;−75}.x∈{75;−75}.
8) |x−17|=23
=> [x−17=23x−17=−23[x−17=23x−17=−23 => [x=23+17x=(−23)+17[x=23+17x=(−23)+17
=> [x=40x=−6[x=40x=−6
Vậy x∈{40;−6}.
mình làm tới đây thôi dài quá:)
tick cho mình nha

a) Vì |x - 3,5| ≥ 0∀x
|4,5 - y| ≥ 0∀y
=> |x - 3,5| + |4,5 - y| ≥ 0 ∀x,y
Dấu " = " xảy ra khi và chỉ khi |x - 3,5| = 0 hoặc |4,5 - y| = 0 => x = 3,5 hoặc y = 4,5
Vậy GTNN = 0 khi x = 3,5;y = 4,5
b) |x - 2| ≥ 0 ∀x
|3 - y| ≥ 0 ∀y
=> |x - 2| + |3 - y| ≥ 0 ∀x,y
Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-2=0\\3-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy GTNN = 0 <=> x = 2,y = 3
c) \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|=0\)
Vì \(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-5\right|\ge0\forall z\end{matrix}\right.\)
=> \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|\ge0\forall x,y,z\)
Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z-5\right|=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{4}\\z=5\end{matrix}\right.\)
Vậy GTNN = 0 khi x = -2/3,y = 3/4,z = 5
Bài cuối tự làm :)))

\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{9999}{10000}\)
\(=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot...\cdot\frac{99\cdot101}{100^2}\)
\(=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(99\cdot101\right)}{2^2\cdot3^2\cdot4^2\cdot...\cdot100^2}\)
\(=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right)\left(3\cdot4\cdot5\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)
\(=2\cdot101=202\)
\(= \frac{1 \cdot 3}{2^{2}} \cdot \frac{2 \cdot 4}{3^{2}} \cdot \frac{3 \cdot 5}{4^{2}} \cdot . . . \cdot \frac{99 \cdot 101}{10 0^{2}}\)
\(= \frac{\left(\right. 1 \cdot 3 \left.\right) \left(\right. 2 \cdot 4 \left.\right) \left(\right. 3 \cdot 5 \left.\right) . . . \left(\right. 99 \cdot 101 \left.\right)}{2^{2} \cdot 3^{2} \cdot 4^{2} \cdot . . . \cdot 10 0^{2}}\)
\(= \frac{\left(\right. 1 \cdot 2 \cdot 3 \cdot . . . \cdot 99 \left.\right) \left(\right. 3 \cdot 4 \cdot 5 \cdot 101 \left.\right)}{\left(\right. 2 \cdot 3 \cdot 4 \cdot . . . \cdot 100 \left.\right) \left(\right. 2 \cdot 3 \cdot 4 \cdot . . . \cdot 100 \left.\right)}\)
\(= 2 \cdot 101 = 202\)
khoảng cách giữa các số hạng là số lẻ có 1 chữ số theo thứ tự từ bé đến lớn
\(D=\left\lbrace m\vert m=n^2\in\mathbb{N}^{\ast},n\le5\right\rbrace\)