Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)(50 phân số)
=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)(50 phân số)
=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50\)
=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{3}\)(Đpcm)

Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)

bạn phải cho số cuối cùng thì mình mới làm được , nếu không có thì giáo viên của bạn cho sai đề
Ta có
\(\frac{2}{3\cdot4}=\frac{2}{\left(1+2\right)+\left(1+3\right)}\)
\(\frac{2}{4\cdot5}=\frac{2}{\left(2+2\right)\cdot\left(2+3\right)}\)
...
Phân số thứ n là \(\frac{2}{\left(n+2\right)\cdot\left(n+3\right)}\)\(n\in N\)
Phân số thứ 50 là \(\frac{2}{\left(50+2\right)\cdot\left(50+3\right)}=\frac{2}{52\cdot53}\)
\(\Rightarrow\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{52\cdot53}\)
\(=2\cdot\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...\frac{1}{52\cdot53}\right)\)
\(=2\cdot\left(\frac{1}{3}-\frac{1}{4}+...+\frac{1}{52}-\frac{1}{53}\right)\)
\(=2\cdot\left(\frac{1}{3}-\frac{1}{53}\right)=\left(\frac{50\cdot2}{159}\right)=\frac{100}{159}\)

ta có
\(\frac{1}{300}< \frac{1}{101}\); \(\frac{1}{300}< \frac{1}{102}\); \(\frac{1}{300}< \frac{1}{102}\)....\(\frac{1}{300}< \frac{1}{299}\)
\(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}< \frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)
\(\frac{200}{300}< \frac{1}{101}+\frac{1}{102}+...+\text{}\text{}\)
rút gọn là xong

Ta có:
\(\frac{1}{101}< \frac{1}{100},\frac{1}{102}< \frac{1}{100},\frac{1}{103}< \frac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}=\frac{3}{100}\)
Mà \(\frac{3}{100}< 1\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}< 1\)
Vậy \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}< 1\)

bài khó nhất nhé
2. Ta có :
\(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)
cộng vào 48 phân số đầu với 1, trừ phân số cuối đi 48 ta được :
\(P=\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\left(\frac{49}{1}-48\right)\)
\(P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)
\(P=\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)
\(P=50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}}{50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)}=\frac{1}{50}\)

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(\Leftrightarrow S=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
- Đặt \(D=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Leftrightarrow\frac{1}{2}D=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow\frac{1}{2}D-D=\frac{1}{2^{10}}-1\)
\(\Leftrightarrow D=\frac{\frac{1}{2^{10}}-1}{-\frac{1}{2}}\)
Vậy \(3.D=3.\left(\frac{\frac{1}{2^{10}}-1}{-\frac{1}{2}}\right)=3.\frac{1023}{512}=\frac{3069}{512}\)

Ta có: \(\frac{1}{2}S=\frac{1}{2}.\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\))
=\(\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^{10}}\)
=> \(S-\frac{1}{2}S=\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)-\left(\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^{10}}\right)\)
=> \(\frac{1}{2}S=3-\frac{3}{2^{10}}\)
=>\(S=\left(3-\frac{3}{2^{10}}\right).2=6-\frac{6}{2^{10}}=6-\frac{3}{2^9}\)
Ta có biểu thức:
\(S = \frac{1}{3} + 1 + \frac{5}{3} + \frac{7}{3} + 3 + \hdots + \frac{101}{3} + \frac{103}{3} + 35\)
Đổi tất cả các số hạng về cùng mẫu số là 3:
\(S = \frac{1}{3} + \frac{3}{3} + \frac{5}{3} + \frac{7}{3} + \frac{9}{3} + \hdots + \frac{101}{3} + \frac{103}{3} + \frac{105}{3}\)
(Vì 35 = 105/3 nên ta thêm vào dãy)
Khi đó:
\(S = \frac{1 + 3 + 5 + 7 + \hdots + 105}{3}\)
Tử số là dãy số lẻ liên tiếp từ 1 đến 105. Đây là cấp số cộng với:
Số số hạng n trong dãy là:
\(105 = 1 + \left(\right. n - 1 \left.\right) \cdot 2 \Rightarrow \left(\right. n - 1 \left.\right) \cdot 2 = 104 \Rightarrow n = 53\)
Tổng của dãy tử số là:
\(T = \frac{n \left(\right. a + a_{n} \left.\right)}{2} = \frac{53 \cdot \left(\right. 1 + 105 \left.\right)}{2} = \frac{53 \cdot 106}{2} = 2809\)
Vậy tổng cần tính là:
\(S = \frac{2809}{3}\)
Kết luận: \(S = \frac{2809}{3}\)
Ta có biểu thức:
\(S = \frac{1}{3} + 1 + \frac{5}{3} + \frac{7}{3} + 3 + \hdots + \frac{101}{3} + \frac{103}{3} + 35\)
Đổi tất cả các số hạng về cùng mẫu số là 3:
\(S=\frac{1}{3}+\frac{3}{3}+\frac{5}{3}+\frac{7}{3}+\frac{9}{3}+\cdots+\frac{101}{3}+\frac{103}{3}+\frac{105}{3}\)
(Vì 35 = 105/3 nên ta thêm vào dãy)
Khi đó:
\(S=\frac{1+3+5+7+\cdots+105}{3}\)
Tử số là dãy số lẻ liên tiếp từ 1 đến 105. Đây là cấp số cộng với:
Số số hạng n trong dãy là:
\(105 = 1 + \left(\right. n - 1 \left.\right) \cdot 2 \Rightarrow \left(\right. n - 1 \left.\right) \cdot 2 = 104 \Rightarrow n = 53\)
Tổng của dãy tử số là:
\(T = \frac{n \left(\right. a + a_{n} \left.\right)}{2} = \frac{53 \cdot \left(\right. 1 + 105 \left.\right)}{2} = \frac{53 \cdot 106}{2} = 2809\)
Vậy tổng cần tính là:
\(S = \frac{2809}{3}\)
Kết luận: \(S = \frac{2809}{3}\)