K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:

Xét hai biểu thức \(\mid a + b \mid\)\(\mid a - b \mid\). Ta sẽ chứng minh tổng của chúng là số chẵn trong mọi trường hợp.

Ta xét hai trường hợp:

Trường hợp 1: \(a\)\(b\) cùng chẵn hoặc cùng lẻ.

Khi đó, \(a + b\)\(a - b\) đều là số chẵn.
Giá trị tuyệt đối của số chẵn vẫn là số chẵn.
Suy ra \(\mid a + b \mid\)\(\mid a - b \mid\) đều chẵn.
Tổng hai số chẵn là số chẵn.
Vậy \(\mid a + b \mid + \mid a - b \mid\) là số chẵn.

Trường hợp 2: Một trong hai số là chẵn, số còn lại là lẻ.

Khi đó, \(a + b\)\(a - b\) đều là số lẻ.
Giá trị tuyệt đối của số lẻ vẫn là số lẻ.
Tổng hai số lẻ là số chẵn.
Vậy \(\mid a + b \mid + \mid a - b \mid\) là số chẵn.

Kết luận:\(a , b\) là số nguyên bất kỳ, thì \(\mid a + b \mid + \mid a - b \mid\) luôn là số chẵn.

25 tháng 7
Ta xét các trường hợp sau:
  • Trường hợp 1\(a \geq 0\) và \(b \geq 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = a + b + \mid a - b \mid\)
    • Nếu \(a \geq b\), thì \(\mid a + b \mid + \mid a - b \mid = a + b + a - b = 2 a\). Vì \(a\) là số nguyên, \(2 a\) là số chẵn.
    • Nếu \(a < b\), thì \(\mid a + b \mid + \mid a - b \mid = a + b + b - a = 2 b\). Vì \(b\) là số nguyên, \(2 b\) là số chẵn.
  • Trường hợp 2\(a < 0\) và \(b < 0\). Đặt \(a^{'} = - a\) và \(b^{'} = - b\), ta có \(a^{'} > 0\) và \(b^{'} > 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = \mid - a^{'} - b^{'} \mid + \mid - a^{'} + b^{'} \mid = \mid a^{'} + b^{'} \mid + \mid b^{'} - a^{'} \mid\)
    • Nếu \(b^{'} \geq a^{'}\), thì \(\mid a^{'} + b^{'} \mid + \mid b^{'} - a^{'} \mid = a^{'} + b^{'} + b^{'} - a^{'} = 2 b^{'}\). Vì \(b^{'}\) là số nguyên dương, \(2 b^{'}\) là số chẵn.
    • Nếu \(b^{'} < a^{'}\), thì \(\mid a^{'} + b^{'} \mid + \mid b^{'} - a^{'} \mid = a^{'} + b^{'} + a^{'} - b^{'} = 2 a^{'}\). Vì \(a^{'}\) là số nguyên dương, \(2 a^{'}\) là số chẵn.
  • Trường hợp 3\(a \geq 0\) và \(b < 0\). Đặt \(b^{'} = - b\), ta có \(b^{'} > 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = \mid a - b^{'} \mid + \mid a + b^{'} \mid\)
    • Nếu \(a \geq b^{'}\), thì \(\mid a - b^{'} \mid + \mid a + b^{'} \mid = a - b^{'} + a + b^{'} = 2 a\). Vì \(a\) là số nguyên, \(2 a\) là số chẵn.
    • Nếu \(a < b^{'}\), thì \(\mid a - b^{'} \mid + \mid a + b^{'} \mid = b^{'} - a + a + b^{'} = 2 b^{'}\). Vì \(b^{'}\) là số nguyên dương, \(2 b^{'}\) là số chẵn.
  • Trường hợp 4\(a < 0\) và \(b \geq 0\). Đặt \(a^{'} = - a\), ta có \(a^{'} > 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = \mid - a^{'} + b \mid + \mid - a^{'} - b \mid = \mid b - a^{'} \mid + \mid a^{'} + b \mid\)
    • Nếu \(b \geq a^{'}\), thì \(\mid b - a^{'} \mid + \mid a^{'} + b \mid = b - a^{'} + a^{'} + b = 2 b\). Vì \(b\) là số nguyên, \(2 b\) là số chẵn.
    • Nếu \(b < a^{'}\), thì \(\mid b - a^{'} \mid + \mid a^{'} + b \mid = a^{'} - b + a^{'} + b = 2 a^{'}\). Vì \(a^{'}\) là số nguyên dương, \(2 a^{'}\) là số chẵn.
Vậy trong mọi trường hợp, |a+b| + |a-b| luôn là số chẵn.
DD
25 tháng 8 2021

Nếu \(1\)trong \(3\)số có giá trị bằng \(0\) , giả sử là \(c=0\):

\(P=\left|a\right|+\left|b\right|+\left|c\right|=2\left|a\right|\)là số chẵn. 

Nếu không có số nào bằng \(0\):

Hai trong ba số \(a,b,c\)sẽ cùng dấu, giả sử đó là \(a,b\).

\(a+b+c=0\Leftrightarrow a+b=-c\)

\(P=\left|a\right|+\left|b\right|+\left|a+b\right|=\left|a\right|+\left|b\right|+\left|a\right|+\left|b\right|=2\left(\left|a\right|+\left|b\right|\right)\)là số chẵn. 

Ta có đpcm. 

19 tháng 2 2020

Ta có: \(ab=c\left(a-b\right)\)

<=> \(c^2=ac-bc-ab+c^2\)

<=> \(c^2=a\left(c-b\right)+c\left(c-b\right)\)

<=> \(c^2=\left(c-b\right)\left(a+c\right)\)

Đặt: ( c - b ; a + c ) = d 

=> \(c^2⋮d^2\)=> \(c⋮d\)(1)

và \(\hept{\begin{cases}c-b⋮d\\a+c⋮d\end{cases}}\)(2)

Từ (1); (2) => \(b;a⋮d\)(3)

 Từ (1); (3) và (a; b ; c ) =1

=> d = 1  hay c - b; a + c nguyên tố cùng nhau 

Mà \(\left(c-b\right)\left(a+c\right)=c^2\)là số chính phương 

=> c - b ; a + c là 2 số chính phương 

Khi đó tồn tại  số nguyên dương u, v sao cho: \(c-b=u^2;a+c=v^2\)khi đó: \(c^2=u^2.v^2\)<=> c = uv  ( vì c, u,, v nguyên dương )

Ta có: \(a-b=\left(a+c\right)+\left(c-b\right)-2c\)

\(=u^2+v^2-2uv=\left(u-v\right)^2\) là số chính phương.