Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sửa đề câu 1 :
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)
\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=1-\frac{1}{100!}< 1\)
sửa đề câu 2
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Ta có :
\(A>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
\(A>\frac{1}{5}-\frac{1}{101}>\frac{1}{5}-\frac{1}{30}=\frac{1}{6}\)
\(\Rightarrow\)\(A>\frac{1}{6}\) \(\left(1\right)\)
Lại có :
\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow\)\(A< \frac{1}{4}\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{1}{6}< A< \frac{1}{4}\) ( đpcm )
Vậy \(\frac{1}{6}< A< \frac{1}{4}\)
Chúc bạn học tốt ~

b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
Câu a sai đề rồi nhé. Cho \(n=6\) thì \(\frac{2n+1}{30n+2}=\frac{13}{182}\) không phải phân số tối giản vì \(\frac{13}{182}=\frac{1}{14}\)
b) \(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{100^2}\)
\(<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\cdots+\frac{1}{99\cdot100}\)
\(=\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+\cdots+\frac{100-99}{99\cdot100}\)
\(=1-\frac12+\frac12-\frac13+\frac13-\frac14+\cdots+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(<1\)
Vậy \(M<1\)
a: Gọi d=ƯCLN(20n+1;30n+2)
=>\(\begin{cases}20n+1\vdots d\\ 30n+2\vdots d\end{cases}\Rightarrow\begin{cases}60n+3\vdots d\\ 60n+4\vdots d\end{cases}\)
=>60n+4-60n-3⋮d
=>1⋮d
=>d=1
=>ƯCLN(20n+1;30n+2)=1
=>\(\frac{20n+1}{30n+2}\) là phân số tối giản
b: \(\frac{1}{2^2}<\frac{1}{1\cdot2}=1-\frac12\)
\(\frac{1}{3^2}<\frac{1}{2\cdot3}=\frac12-\frac13\)
...
\(\frac{1}{100^2}<\frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)
Do đó: \(\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{100^2}<1-\frac12+\frac12-\frac13+\cdots+\frac{1}{99}-\frac{1}{100}\)
=>\(A<1-\frac{1}{100}\)
=>A<1