
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu a mình chắc chắn là đúng vì mình làm rồi.
Chúc bạn học tốt.
b) \(-4x^2-4x-2\) <0 với mọi x
\(=-\left(4x^2+4x+2\right)\)
\(=-\left[\left(2x^2\right)+2.2x.1+1^2+2\right]\)
\(=-\left[\left(2x+1\right)^2+2\right]\)
\(=-\left(2x+1\right)^2-2\)
Nx : \(-\left(2x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(2x+1\right)^2-2< 0\) với mọi x
\(\Rightarrow-4x^2-4x-2< 0\) với mọi x

a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1

a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3}{4}y^2+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\)
với mọi x,y
b/ \(x^2+5y^2+2x-4xy-16y+14=x^2-2x\left(2y-1\right)+\left(4y^2-4y+1\right)+\left(y^2-12y+36\right)-23\)
\(=\left(x-2y+1\right)^2+\left(y-6\right)^2-23\ge-23\)
Bạn xem lại đề
2 câu trên đã có kết quả, mình giải quyết câu c nhá
5x2 + 10y2 - 6xy - 4x - 2y + 3 > 0
5x2 + 10y2 - 6xy - 4x - 2y + 3 = x2 + 4x2 + y2 + 9y2 - 6xy - 4x - 2y + 3
=[(2x)2 - 2*2x + 1] + (y2 - 2y + 1) + [(3y)2 - 2*3y + x2 ] + 1
=(2x + 1)2 + (y - 1)2 + (3y - x)2 + 1
(2x + 1)2 \(\ge\)0 với mọi x
(y - 1)2 \(\ge\) 0 với mọi y
(3y - x)2\(\ge\) 0 với mọi x và y
1>0
=> ĐPCM

a)\(y^2+8y-20=0\)
\(\Leftrightarrow y^2+2\cdot y\cdot4+16-16-20=0\)
\(\Leftrightarrow\left(y+4\right)^2-36=0\)
\(\Leftrightarrow\left(y+4\right)^2=36\)
\(\Leftrightarrow y+4=\pm6\)
\(\Leftrightarrow y=2\)hoặc \(y=-10\)
Vậy.....
b)\(x^2+7x=0\)
\(\Leftrightarrow x\left(x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
Vậy .....
c)\(2y^2-5y=0\)
\(\Leftrightarrow y\left(2y-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y=0\\2y-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{5}{2}\end{matrix}\right.\)
Vậy ......
d)\(y^2-5y^2+4=0\)
\(\Leftrightarrow-4y^2+4=0\)
\(\Leftrightarrow-4\left(y^2-4\right)=0\)
\(\Leftrightarrow-4\left(y+4\right)\left(y-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}y=-4\\y=4\end{matrix}\right.\)
Vậy....
2) Bạn thực hiện phép chia đi
Cuối cùng có:
Để (x2+3x+a)\(⋮\)(x+1) thì a-2=0=>a=2
Chúc bạn học tốt


a) 5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1
Ta có : \(\hept{\begin{cases}\left(x-3y\right)^2\\\left(2x-1\right)^2\\\left(y-1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)
=> đpcm
b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 = 0 < Sửa -z2 -> +z2 )
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + 4( y2 + 2y + 1 ) + ( z - 3 )2 + 1
= ( x - 1 )2 + 4( y + 1 )2 + ( z - 3 )2 + 1
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\4\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\)
=> đpcm
hứ
GIả sử \(VT=\left(x+ay+b\right)\left(x+cy+d\right)+k\)
Khi đó \(VT=x^2+cxy+dx+axy+acy^2+ady+bx+bcy+bd+k\)
\(VT=x^2+cay^2+\left(a+c\right)xy+\left(b+d\right)x+\left(ad+bc\right)y+bd+k\)
Đồng nhất hệ số, ta được \(\begin{cases}ca=8\left(1\right)\\ a+c=-6\left(2\right)\\ b+d=2\left(3\right)\\ ad+bc=-5\left(4\right)\end{cases}\) và \(bd+k=-1\) (5)
Từ \(\left(2\right)\lrArr c=-6-a\), thế vào (1) ta được \(\left(-6-a\right)a=8\)
\(\lrArr-a^2-6a=8\)
\(\lrArr a^2+6a+8=0\)
\(\lrArr a^2+2a+4a+8=0\)
\(\lrArr a\left(a+2\right)+4\left(a+2\right)=0\)
\(\lrArr\left(a+2\right)\left(a+4\right)=0\)
\(\lrArr\left[\begin{array}{l}a=-2\\ a=-4\end{array}\right.\)
Nếu \(a=-2\rArr c=-4\) , \(a=-4\rArr c=-2\) , nhưng do a và c có vai trò như nhau trong VT nên không mất tổng quát, ta chọn \(a=-2,c=-4\). Thế vào (4), ta có \(-2d-4b=-5\) hay \(4b+2d=5\). (6)
Lại có \(\left(3\right)\lrArr d=2-b\) , thế vào (6), ta được \(4b+2\left(2-b\right)=5\lrArr b=\frac12\), suy ra \(d=\frac32\). Thế vào (5), suy ra \(k=-\frac74\)
Như vậy pt đã cho tương đương với \(\left(x-2y+\frac12\right)\left(x-4y+\frac32\right)-\frac74=0\)
Nhân cả 2 vế của pt này với 4 rồi chuyển vế, ta được \(\left(2x-4y+1\right)\left(2x-8y+3\right)=7\)
Ta xét các trường hợp:
2x-4y+1
1
-1
7
-7
2x-8y+3
7
-7
1
-1
x
-2
3
7
-6
y
-1
2
2
-1
Vậy pt đã cho có 4 nghiệm nguyên (x, y) là \(\left(-2,-1\right);\left(3,2\right);\left(7,2\right);\left(-6,-1\right)\)