Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6) Gọi số máy cày của đội 1 ; 2 ; 3 lần lượt là a ; b ; c ĐK : a ; b ; c > 0
Vì cùng cày trên 3 cánh đồng nên số máy cày và số ngày làm là 2 đại lượng tỉ lệ nghịch
Ta có a + b + c = 33
Lại có 2a = 4b = 6c
=> \(\frac{2a}{12}=\frac{4b}{12}=\frac{6c}{12}\)
=> \(\frac{a}{6}=\frac{b}{3}=\frac{c}{2}=\frac{a+b+c}{6+3+2}=\frac{33}{11}=3\)
=> \(\hept{\begin{cases}a=18\\b=9\\c=6\end{cases}}\)
Vậy số máy cày của đội 1 ; 2 ; 3 lần lượt là 18 ; 9 ; 6
7) Gọi số học sinh của 3 lớp 7A ; 7B ; 7C lần lượt là a ; b ; c (a ; b ; c > 0)
Ta có a + b - c = 57
Lại có : \(\frac{2}{3}a=\frac{3}{4}b=\frac{4}{5}c\)
=> \(\frac{2}{3}a.\frac{1}{12}=\frac{3}{4}b.\frac{1}{12}=\frac{4}{5}c.\frac{1}{12}\)
=> \(\frac{a}{18}=\frac{b}{16}=\frac{c}{15}=\frac{a+b-c}{18+16-15}=\frac{57}{19}=3\)

Bài 1 : Gọi số viên bi của ba bạn là : a, b,c, theo đề bài ta có : a/3,b/4, c/5 và a + b + c = 60.Áp dụng tính chất dãy tỉ số bằng nhau:
a/3,b/4,c/5 = a+ b+ c / 3 + 4 + 5 = 60/12= 5
a/3 = a = 5 . 3 = 15
b/4 = b = 5 . 4 = 20
c/5 = c = 5. 5 = 25
Vậy số bi ba bạn lần lượt có là 15, 20 và 25
Bài 1 bạn Hà Thu Trang làm r nhé :))
Giờ mình làm bài 2,3,4
Bài 2 :
Gọi số hoa điểm tốt của ba lớp lần lượt là x,y,z(điểm)\(\left(x,y,z\inℕ^∗\right)\)
Theo điều kiện của đề bài ta có : \(x:y:z=7:5:8\)hoặc \(\frac{x}{7}=\frac{y}{5}=\frac{z}{8}\)và \(4x+3y-2z=108\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{z}{8}=\frac{4x}{28}=\frac{3y}{15}=\frac{2z}{16}=\frac{4x+3y-2z}{28+15-16}=\frac{108}{27}=4\)
=> \(\hept{\begin{cases}\frac{x}{7}=4\\\frac{y}{5}=4\\\frac{z}{8}=4\end{cases}}\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=32\end{cases}}\)
Vậy số hoa điểm tốt của lớp 7A,7B,7C lần lượt là 28 điểm,20 điểm,32 điểm
Bài 3 :
Gọi số cây của mỗi lớp lần lượt là x.y.z(cây) \(\left(x,y,z\inℕ^∗\right)\)
Theo điều kiện của đề bài ta có : \(x:y:z=9:7:8\)hoặc \(\frac{x}{9}=\frac{y}{7}=\frac{z}{8}\)và \(x-y=22\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{8}=\frac{x-y}{9-7}=\frac{22}{2}=11\)
=> \(\hept{\begin{cases}\frac{x}{9}=11\\\frac{y}{7}=11\\\frac{z}{8}=11\end{cases}}\Rightarrow\hept{\begin{cases}x=99\\y=77\\z=88\end{cases}}\)
Vậy số cây của lớp 7A,7B,7C trồng được lần lượt là 99 cây,77 cây,88 cây
Bài 4 :
Gọi số máy của đội thứ nhất,thứ hai,thứ ba lần lượt là x,y,z \(\left(x,y,z\inℤ^∗\right)\)
Theo điều kiện của đề bài ta có : x - y = 2
Cày cùng một diện tích như nhau và công suất của các máy không thay đổi thì số máy và số ngày làm việc là hai đại lượng tỉ lệ nghịch.Ta có :
\(4x=6y=8z\)hoặc \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{8}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{8}}=\frac{x-y}{\frac{1}{4}-\frac{1}{6}}=\frac{2}{\frac{1}{12}}=24\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{4}}=24\\\frac{y}{\frac{1}{6}}=24\\\frac{z}{\frac{1}{8}}=24\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=4\\z=3\end{cases}}\)
Vậy : ...

Bài 1:
a) Có \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow x.y.z=2k.3k.5k=30k^3=810\)
\(\Rightarrow k^3=27\Rightarrow k=3\)
\(\Rightarrow x=3.2=6;y=3.3=9;z=3.5=15\)
Vậy ....
b) Ta có:
\(\frac{x}{y}=\frac{3}{4}\left(x^2+y^2=100\right)\)
\(\Rightarrow x=\frac{3}{4}.y\)
\(\Rightarrow\frac{9}{16}.y^2+y^2=100\)
\(\Rightarrow\frac{25}{16}.y^2=100\Rightarrow y^2=64\Rightarrow y=8\)
\(\Rightarrow x=\frac{8.3}{4}=6\)
c, Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Mai Chi

Bài 1.
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x.y.z}{2.3.5}=\frac{810}{30}=27\)
Vì \(\frac{x}{2}=27\Rightarrow x=27.2\Rightarrow x=54\)
\(\frac{y}{3}=27\Rightarrow y=27.3\Rightarrow y=81\)
\(\frac{z}{5}=27\Rightarrow z=27.5\Rightarrow z=135\)
Vậy x = 54 ; y = 81 ; z = 135

Gọi số máy cày của ba đội lần lượt là x;y;z (x;y;z > 0)
Vì diện tích ba cánh đồng là như nhau nên thời gian và số máy cày là hai đại lượng tỉ lệ nghịch
Theo bài ra ta có: x.4 = y.6 = z.8 và x - y = 2
Suy ra: x6=y4x6=y4. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x6=y4=x−y6−4=22=1x6=y4=x−y6−4=22=1
Do đó x = 6 ; y = 4
Vậy đội thứ nhất có 6 máy

Gọi số máy của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là \(a,b,c\)(máy) \(a,b,c\inℕ^∗\).
Ta có: \(2a=4b=6c\Leftrightarrow\frac{a}{6}=\frac{b}{3}=\frac{c}{2}\)
\(a+b+c=33\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{6}=\frac{b}{3}=\frac{c}{2}=\frac{a+b+c}{6+3+2}=\frac{33}{11}=3\)
\(\Leftrightarrow\hept{\begin{cases}a=3.6=18\\b=3.3=9\\c=3.2=6\end{cases}}\)
Bài 6: Gọi số cây tổ 1, tổ 2, tổ 3 trồng được lần lượt là a(cây),b(cây),c(cây)
(ĐIều kiện: a,b,c∈N; a>0; b>0; c>0)
Tổng số cây ba tổ trồng được là 179 cây nên a+b+c=179
Tỉ số giữa số cây tổ 1 trồng được và số cây tổ 2 trồng được là 6/11 nên ta có:
\(\frac{a}{b}=\frac{6}{11}\)
=>\(\frac{a}{6}=\frac{b}{11}\)
=>\(\frac{a}{42}=\frac{b}{77}\)
Tỉ số giữa số cây tổ 1 trồng được và số cây tổ 3 trồng được là 7/10 nên ta có:
\(\frac{a}{c}=\frac{7}{10}\)
=>\(\frac{a}{7}=\frac{c}{10}\)
=>\(\frac{a}{42}=\frac{c}{60}\)
=>\(\frac{a}{42}=\frac{b}{77}=\frac{c}{60}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{42}=\frac{b}{77}=\frac{c}{60}=\frac{a+b+c}{42+77+60}=\frac{179}{179}=1\)
=>\(\begin{cases}a=42\cdot1=42\\ b=77\cdot1=77\\ c=60\cdot1=60\end{cases}\) (nhận)
Vậy: số cây tổ 1, tổ 2, tổ 3 trồng được lần lượt là 42(cây), 77(cây), 60(cây)
Bài 5:
Gọi khối lượng thóc của kho 1; kho 2; kho 3 lần lượt là a(tấn),b(tấn),c(tấn)
(Điều kiện: a>0; b>0;c>0)
Sau khi chuyển đi 1/5 số thóc ở kho 1; 1/6 số thóc ở kho 2 và 1/11 số thóc ở kho 3 thì số thóc còn lại ở ba kho bằng nhau nên ta có:
\(\left(1-\frac15\right)a=\left(1-\frac16\right)b=\left(1-\frac{1}{11}\right)c\)
=>\(\frac45a=\frac56b=\frac{10}{11}c\)
=>\(\frac{a}{\frac54}=\frac{b}{\frac65}=\frac{c}{\frac{11}{10}}\)
Tổng số thóc của ba kho là 710 tấn nên a+b+c=710
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{\frac54}=\frac{b}{\frac65}=\frac{c}{\frac{11}{10}}=\frac{a+b+c}{\frac54+\frac65+\frac{11}{10}}=\frac{710}{3.55}=200\)
=>\(\begin{cases}a=200\cdot\frac54=250\\ b=200\cdot\frac65=240\\ c=200\cdot\frac{11}{10}=220\end{cases}\) (nhận)
Vậy: khối lượng thóc của kho 1; kho 2; kho 3 lần lượt là 250(tấn), 240(tấn), 220(tấn)
Bài 1: Tìm số học sinh mỗi lớp
🧮 Gọi số học sinh lớp 7B là \(x\)
✅ Kết quả:
✅ Bài 2: Tìm khối lượng từng loại hạt
🧮 Gọi mỗi phần là 1 đơn vị:
→ Tổng: 159 + 24 + 5 = 188 phần
→ Mỗi phần: \(\frac{435}{188} = 2.3138 \ldots\) kg
✅ Kết quả:
(Đáp số gần đúng vì số lẻ)
✅ Bài 3: Trồng cây chia đều số cây
👉 Mỗi đội trồng như nhau → đội nào trồng ít thì phải có nhiều người hơn
Gọi số người các đội là:
→ Tổng người: