Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:
A = {11; 14; ...; 140}
Xét dãy số: 11; 14;...; 140
Dãy số trên là dãy số cách đều với khoảng cách là:
14 - 11 = 3
Số số hạng của dãy số trên là:
(140 - 11) : 3 = 44(số)
Vậy tập hợp A có 44 phần tử.
Đáp số: 44 số

S = {5; 11; 17;...; 371}
Xét dãy số: 5; 11; 17;...; 371
Dãy số trên là dãy số cách đều với khoảng cách là:
11 - 5 = 6
Số số hạng của dãy số trên là:
(371 - 5) : 6 + 1 = 62 (số)
Vậy tập S có 62 phân tử

Đổi 5 phút 18 giây = 318 giây
Khoảng cách giữa hai ga là:
10 * 310 = 3180(m) = 3,18(km)
Vậy khoảng cách giữa hai ga Thái Hà đến ga Vành đai 3 là 3,18 km

\(A=1+2+2^2+2^3+\ldots+2^{500}\)
\(2A=2\times(1+2+2^2+2^3+\ldots+2^{500}\)
\(2A=2+2^2+2^3+2^4+\ldots+2^{501}\)
\(2A-A=(2+2^2+2^3+2^4+...+2^{501})-(1+2+2^2+2^3+\ldots+2^{500)}\)
\(A=2^{501}-1\)
đặt A= 1+2+2^2+2^3+...+2^500
=>2A=2+22+23+...+2501
=>2A-A=2+22+23+...+2500+2501-(1+2+22+23+...+2500)
=> A=2+22+23+...+2500+2501-1-2-22-23-...-2500
=2501-1
mik ko chắc là đúng đâu bn

Ta có: B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<1 ( Vì 172009+1< 172010+1 )
Nên B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<\(\frac{17^{2009}+1+16}{17^{2010}+1+16}\)
=\(\frac{17^{2009}+17}{17^{2010}+17}\)
=\(\frac{17\left(17^{2008}+1\right)}{17\left(17^{2009}+1\right)}\)
=\(\frac{17^{2008+1}}{17^{2009}+1}\)=A
Vậy A>B

Bài 2: Vì x \(\in\) N nên ta có bảng giá trị sau :
x-2 | 1 | 12 | 4 | 3 | 2 | 6 |
x | 3 | 14 | 6 | 5 | 4 | 8 |
2y+1 | 12 | 1 | 3 | 4 | 6 | 2 |
y | loại | 0 | 1 | loại | loại | loại |
Vậy (x ; y) \(\in\) {(14 ; 0) ; (6 ; 1)}
Bài giải:
1/ 7^(2x-1) -7^6. 3=7^6.4
7^(2x-1) =7^6.4 +7^6. 3
7^(2x-1) =7^6.(4+3)
7^(2x-1) =7^6.7
7^(2x-1) =7^7
2x-1=7
2x=7+1
2x=8
x=4
2/ (x-2).(2y+1)=12 vì x,y E N => x-2 và 2y+1 cũng E N ; 2y +1 là 1 số lẻ
* 12 =12.1=4.3 ( để có 1 số lẻ vì 2y +1 là 1 số lẻ )
th1: x-2=12 và 2y+1=1
x-2=12 =>x=14
2y+1=1 =>2y=0 =>y=0
th2 x-2=4 và 2y+1 =3
x-2 =4=>x=6
2y+1=3 =>2y=2 =>y=1

\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
4522 : 17. 7
= 266.7
= 1862
p=98