K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
17 tháng 7

Gọi `3` số tự nhiên liên tiếp đó là: `a,a+1,a+2` với `a\inN`

Tổng của chúng là: `a+(a+1)+(a+2)`

`=a+a+1+a+2=3a+3=3(a+1)`

Vì: `a+1\inN` do đó: `3(a+1)\vdots3`

Gọi `4` số tự nhiên liên tiếp đó là: `a,a+1,a+2,a+3` với `a\inN`

Tổng của chúng là; `a+(a+1)+(a+2)+(a+3)`

`=a+a+1+a+2+a+3`

`=(a+a+a+a)+(1+2+3)`

`=4a+6`

Vì: `a\inN` do đó; `4a\vdots4` mà `6` không chia hết cho `4`

`->4a+6` không chia hết cho `4`

17 tháng 7

tổng 3 số tự nhiên chia hết cho 3 có thể là:1,2,3 hoặc 3,4,5.

tổng 4 số tự nhiên ko chia hết cho 4 là:1,2,3,4 hoặc 5,6,7,8.

14 tháng 10 2019

1. Chứng tỏ rằng: ab + ba chia hết cho 11:

Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b) 

Vì \(11\left(a+b\right)⋮11\)

\(\Rightarrow ab+ba⋮11\)

Chứng tỏ rằng: ab - ba chia hết cho 9

Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)

vì \(9\left(a-b\right)⋮9\)

\(\Rightarrow ab-ba⋮9\)

14 tháng 10 2019

1. a) Ta có : ab + ba =  (a0 + b) + (b0 + a)

                                = (10a + b) + (10b + a)

                                = 10a + b + 10b + a

                                = (10a + a) + (b + 10b)

                                = 11a + 11b

                                = 11(a + b) \(⋮\)11

=> ab + ba  \(⋮\)11 (ĐPCM)

b) Ta có : ab - ba = (a0 + b) - (b0 + a) 

                            = (10a + b) - (10b + a) 

                            = 10a + b - 10b - a

                            = (10a - a) - (10b - b)

                            = 9a - 9b

                            = 9(a - b) \(⋮\)9

=>  ab + ba  \(⋮\)9 (ĐPCM)

2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) \(⋮\)3 (ĐPCM)

3) 

Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) 

=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)

29 tháng 3 2020

a)Gọi 3 STN liên tiếp đó là a,a+1,a+2

Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3

b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3

Ta có: a+(a+1)+(a+2)+(a+3)=4a+6

4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4

c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858

d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430

a)Gọi 3 STN liên tiếp đó là a,a+1,a+2

Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3

b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3

Ta có: a+(a+1)+(a+2)+(a+3)=4a+6

4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4

a,vì trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn  mà số chẵn thì chia hết cho 2 

mk chỉ biết vậy thôi

14 tháng 10 2017

a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2

b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3

c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 

      3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3

\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)

d) Tương tự

14 tháng 10 2017

tk mk nhá

4 tháng 12 2021

scjb

l

lbjsc

jlb  jkscd

l  D

kc K
đsdCBU
osdob

jvjob

sadvkj

bsd

jkbvdsl

kn 

kjbsđ jbo


jkb bjk

4 tháng 12 2021

ưởqvbuob

khr

wibuvibu

dhoidwhouvwouhdvbiowdobvvudsukhc

owdo

hfdauovoibadPhuo

14 tháng 12 2020

1/

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2

+ Nếu \(n⋮3\) Bài toán đã được c/m

+ Nếu n chia 3 dư 1 => \(n+2⋮3\)

+ Nếu n chia 3 dư 2 => \(n+1⋮3\)

Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3

2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau

\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)

\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)

\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4

3/

a/ Gọi 3 số TN liên tiếp là n; n+1; n+2

\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)

b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3

\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)

Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4