
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)
b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)
c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)

Ta có:\(TH1:\left(3x+1\right)^2-\left(1-2x\right)^2=\left(3x+1+1-2x\right)\left(3x+1-1+2x\right)=\left(x+2\right)\left(5x\right)\)
Còn ra hằng đẳng thức thì mk chịu

\(S=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)
\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2=\dfrac{n^2\cdot\left(n+1\right)^2}{4}\)

\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{x-1}\)
\(\text{3) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2\left(x-y\right)z+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)

\(A=3x^2-x+2\)
\(A=3.\left[x^2-2.\frac{1}{6}x+\left(\frac{1}{6}\right)^2\right]+\frac{71}{36}\)
\(A=3.\left(x-\frac{1}{6}\right)^2+\frac{71}{36}\)
Ta có: \(3.\left(x-\frac{1}{6}\right)^2\ge0\forall x\)
\(\Rightarrow3.\left(x-\frac{1}{6}\right)^2+\frac{71}{36}\ge\frac{71}{36}\forall x\)
\(A=\frac{71}{36}\Leftrightarrow3.\left(x-\frac{1}{6}\right)^2=0\Leftrightarrow x=\frac{1}{6}\)
Vậy \(A_{min}=\frac{71}{36}\Leftrightarrow x=\frac{1}{6}\)
Tham khảo ~

(x+2)^2+(x-3)^2-2(x-1)(x+1)=9
=>x2+4x+4+x2-6x+9-2x2+2=9
=>(x2+x2-2x2)+(4x-6x)+4+9+2=9
=>-2x+15=9
=>-2x=-6
=>x=3
(x+2)^2+(x-3)^2-2(x-1)(x+1)=9 =>x2+4x+4+x2-6x+9-2x2+2=9 =>(x2+x2-2x2)+(4x-6x)+4+9+2=9 =>-2x+15=9 =>-2x=-6 =>x=3

1, \(16x^2-9=\left(4x\right)^2-3^2=\left(4x-3\right)\left(4x+3\right)\)
2,\(x^2-4+\left(x+2\right)^2=\left(x-2\right)\left(x+2\right)\left(x+2\right)^2=\left(x-2\right)\left(x+2\right)^3\)
3,\(5a\left(a-2\right)-a+2=5a\left(a-2\right)-1\left(a-2\right)=\left(5a-1\right)\left(a-2\right)\)
4,\(7\left(a-5\right)+8a\left(5-a\right)=7\left(a-5\right)-8a\left(a-5\right)=\left(7-8a\right)\left(a-5\right)\)
5, \(25a^2-4b^2+4b-1=25a^2-\left(4b^2-4b+1\right)=\left(5a\right)^2-\left(2b-1\right)^2=\left(5a-2b+1\right)\left(5a+2b-1\right)\)
\(\left(\frac12-x^2\right)^2\)
\(=\left(\frac12\right)^2-2\cdot\frac12\cdot x^2+\left(x^2\right)^2\)
\(=\frac14-x^2+x^4\)
\(\left(\frac12-x^2\right)^2=\frac14-x+x^4\)