
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có: \(\sqrt{0.1}\cdot\sqrt{4000}\)
\(=\sqrt{\frac{1}{10}}\cdot\sqrt{4000}\)
\(=\sqrt{\frac{1}{10}\cdot4000}=\sqrt{400}=20\)
b) Ta có: \(\sqrt{\frac{9}{196}}=\sqrt{\left(\frac{3}{14}\right)^2}\)
\(=\left|\frac{3}{14}\right|\)
\(=\frac{3}{14}\)(Vì \(\frac{3}{14}>0\))
c) Ta có: \(\sqrt{16}\cdot\sqrt{36}-\sqrt{125}:\sqrt{0.01}\)
\(=\sqrt{16\cdot36}-\frac{\sqrt{125}}{\sqrt{\frac{1}{100}}}\)
\(=\sqrt{576}-\sqrt{125:\frac{1}{100}}\)
\(=24-\sqrt{125\cdot100}\)
\(=24-\sqrt{12500}\)
\(=24-50\sqrt{5}\)
d) Ta có: \(\left(\sqrt{112}-\sqrt{63}+\sqrt{7}\right):\sqrt{7}\)
\(=\left(4\sqrt{7}-3\sqrt{3}+\sqrt{7}\right):\sqrt{7}\)
\(=\frac{2\sqrt{7}}{\sqrt{7}}=2\)
e) Ta có: \(\sqrt{2.5}\cdot\sqrt{30}\cdot\sqrt{48}\)
\(=\sqrt{\frac{5}{2}\cdot30\cdot48}=\sqrt{3600}=60\)

bạn giải theo delta nha :) mình vd một câu đó
\(1.x^2-11x+30=0\)
\(\Delta=\left(-11\right)^2-4.1.30=1>0\)
Do đó pt có 2 nghiệm phân biệt là:
\(x_1=\frac{11+\sqrt{1}}{2}=6;x_2=\frac{11-\sqrt{1}}{2}=5\)

\(1)\) Ta có :
\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)
\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)
Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)
\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Chúc bạn học tốt ~

a)
\(4\sqrt{7}=\sqrt{4^2.7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)
\(\sqrt{112}< \sqrt{117}\Rightarrow 4\sqrt{7}< 3\sqrt{13}\)
b) \(3\sqrt{12}=\sqrt{3^2.12}=\sqrt{9.2^2.3}=2\sqrt{27}>2\sqrt{16}\)
c)
\(\frac{1}{4}\sqrt{82}=\sqrt{\frac{82}{16}}=\sqrt{\frac{41}{8}}=\sqrt{5+\frac{1}{8}}\)
\(6\sqrt{\frac{1}{7}}=\sqrt{\frac{36}{7}}=\sqrt{5+\frac{1}{7}}\)
\(\sqrt{5+\frac{1}{8}}< \sqrt{5+\frac{1}{7}}\Rightarrow \frac{1}{4}\sqrt{82}< 6\sqrt{\frac{1}{7}}\)
d)
\(\frac{1}{2}\sqrt{\frac{17}{2}}=\sqrt{\frac{17}{8}}=\sqrt{2+\frac{1}{8}}\)
\(\frac{1}{3}\sqrt{19}=\sqrt{\frac{19}{9}}=\sqrt{2+\frac{1}{9}}\)
\(\sqrt{2+\frac{1}{8}}>\sqrt{2+\frac{1}{9}}\Rightarrow \frac{1}{2}\sqrt{\frac{17}{2}}> \frac{1}{3}\sqrt{19}\)
e)
\(3\sqrt{3}-2\sqrt{2}=\sqrt{27}-\sqrt{8}\)
Mà \(\sqrt{27}>\sqrt{25}; \sqrt{8}< \sqrt{9}\Rightarrow \sqrt{27}-\sqrt{8}> \sqrt{25}-\sqrt{9}=5-3=2\)
Vậy \(3\sqrt{3}-2\sqrt{2}>2\)
f)
\(\sqrt{7}+\sqrt{5}< \sqrt{9}+\sqrt{9}=6\)
\(\sqrt{49}=7\)
\(\Rightarrow \sqrt{7}+\sqrt{5}< 6< 7=\sqrt{49}\)
g)
\(\sqrt{2}< \sqrt{3}; \sqrt{11}< \sqrt{25}=5\)
\(\Rightarrow \sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
h) Lặp lại câu d
i)
\(\sqrt{21}>\sqrt{20}\); \(\sqrt{5}< \sqrt{6}\)
\(\Rightarrow \sqrt{21}-\sqrt{5}> \sqrt{20}-\sqrt{6}\)
Ta có: \(\Delta=\left\lbrack-2\left(m-1\right)\right\rbrack^2-4m^2\)
\(=4\left(m-1\right)^2-4m^2\)
\(=4\left(m^2-2m+1-m^2\right)=4\left(-2m+1\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>4(-2m+1)>0
=>-2m+1>0
=>-2m>-1
=>\(m<\frac12\)
Theo Vi-et, ta có:
\(x_1+x_2=-\frac{b}{a}=2\left(m-1\right);x_1x_2=\frac{c}{a}=m^2\)
\(\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}=-5\left(x_1+x_2\right)\)
=>\(\frac{x_1^3+x_2^3}{x_1x_2}=-5\left(x_1+x_2\right)\)
=>\(x_1^3+x_2^3=-5x_1x_2\left(x_1+x_2\right)\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+5x_1x_2\left(x_1+x_2\right)=0\)
=>\(\left(x_1+x_2\right)^3+2x_1x_2\left(x_1+x_2\right)=0\)
=>\(\left(x_1+x_2\right)\left\lbrack\left(x_1+x_2\right)^2+2x_1x_2\right\rbrack=0\)
=>\(\left(2m-2\right)\left\lbrack\left(2m-2\right)^2+2m^2\right\rbrack=0\)
=>\(\left(2m-2\right)\left\lbrack4m^2-8m+4+2m^2\right\rbrack=0\)
=>\(\left(2m-2\right)\left(6m^2-8m+4\right)=0\)
=>\(\left(m-1\right)\left(3m^2-4m+2\right)=0\)
mà \(3m^2-4m+2=3\left(m^2-\frac43m+\frac23\right)=3\left(m^2-2\cdot m\cdot\frac23+\frac49+\frac29\right)=3\left(m-\frac23\right)^2+\frac23>0\forall m\)
nên m-1=0
=>m=1(loại)